login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A175899
a(n) = a(n-2) + a(n-3) + 2*a(n-4), with a(1) = 0, a(2) = 2, a(3) = 3, a(4) = 10.
1
0, 2, 3, 10, 5, 17, 21, 42, 48, 97, 132, 229, 325, 555, 818, 1338, 2023, 3266, 4997, 7965, 12309, 19494, 30268, 47733, 74380, 116989, 182649, 286835, 448398, 703462, 1100531, 1725530, 2700789, 4232985, 6627381, 10384834, 16261944, 25478185, 39901540, 62509797
OFFSET
1,2
COMMENTS
According to the reference, p divides a(p) for every prime p.
LINKS
Eric Pite, Problem 1851, Mathematics Magazine 83 (2010) 303.
FORMULA
G.f.: x*(-2*x-3*x^2-8*x^3)/(-1+x^2+x^3+2*x^4). - Harvey P. Dale, Jul 24 2011
a(n) = n*sum(k=1..n/2, sum(j=0..k, binomial(j,n-4*k+2*j)*2^(k-j) * binomial(k,j))/k), n>0. - Vladimir Kruchinin, Oct 21 2011
MAPLE
a:= n-> (<<0|1|0|0>, <0|0|1|0>, <0|0|0|1>, <2|1|1|0>>^n.
<<4, 0, 2, 3>>)[1, 1]:
seq(a(n), n=1..50); # Alois P. Heinz, Oct 21 2011
MATHEMATICA
LinearRecurrence[{0, 1, 1, 2}, {0, 2, 3, 10}, 40] (* Harvey P. Dale, Jul 24 2011 *)
PROG
(Maxima) a(n):=n*sum(sum(binomial(j, n-4*k+2*j)*2^(k-j)*binomial(k, j), j, 0, k)/k, k, 1, n/2); /* Vladimir Kruchinin, Oct 21 2011 */
(Haskell)
a175899 n = a175899_list !! (n-1)
a175899_list = 0 : 2 : 3 : 10 : zipWith (+) (map (* 2) a175899_list)
(zipWith (+) (tail a175899_list) (drop 2 a175899_list))
-- Reinhard Zumkeller, Mar 23 2012
CROSSREFS
Sequence in context: A266552 A263716 A344457 * A328613 A064946 A078730
KEYWORD
nonn,easy
AUTHOR
John W. Layman, Oct 11 2010
STATUS
approved