login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A175899 a(n) = a(n-2) + a(n-3) + 2*a(n-4), with a(1) = 0, a(2) = 2, a(3) = 3, a(4) = 10. 1
0, 2, 3, 10, 5, 17, 21, 42, 48, 97, 132, 229, 325, 555, 818, 1338, 2023, 3266, 4997, 7965, 12309, 19494, 30268, 47733, 74380, 116989, 182649, 286835, 448398, 703462, 1100531, 1725530, 2700789, 4232985, 6627381, 10384834, 16261944, 25478185, 39901540, 62509797 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

According to the reference, p divides a(p) for every prime p.

LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 1..1000

Eric Pite, Problem 1851, Mathematics Magazine 83 (2010) 303.

Index entries for linear recurrences with constant coefficients, signature (0, 1, 1, 2).

FORMULA

G.f.: x*(-2*x-3*x^2-8*x^3)/(-1+x^2+x^3+2*x^4). - Harvey P. Dale, Jul 24 2011

a(n) = n*sum(k=1..n/2, sum(j=0..k, binomial(j,n-4*k+2*j)*2^(k-j) * binomial(k,j))/k), n>0. - Vladimir Kruchinin, Oct 21 2011

MAPLE

a:= n-> (<<0|1|0|0>, <0|0|1|0>, <0|0|0|1>, <2|1|1|0>>^n.

        <<4, 0, 2, 3>>)[1, 1]:

seq(a(n), n=1..50);  # Alois P. Heinz, Oct 21 2011

MATHEMATICA

LinearRecurrence[{0, 1, 1, 2}, {0, 2, 3, 10}, 40] (* Harvey P. Dale, Jul 24 2011 *)

PROG

(Maxima) a(n):=n*sum(sum(binomial(j, n-4*k+2*j)*2^(k-j)*binomial(k, j), j, 0, k)/k, k, 1, n/2); /* Vladimir Kruchinin, Oct 21 2011 */

(Haskell)

a175899 n = a175899_list !! (n-1)

a175899_list = 0 : 2 : 3 : 10 : zipWith (+) (map (* 2) a175899_list)

   (zipWith (+) (tail a175899_list) (drop 2 a175899_list))

-- Reinhard Zumkeller, Mar 23 2012

CROSSREFS

Cf. A001608, A001634.

Sequence in context: A266552 A263716 A344457 * A328613 A064946 A078730

Adjacent sequences:  A175896 A175897 A175898 * A175900 A175901 A175902

KEYWORD

nonn,easy

AUTHOR

John W. Layman, Oct 11 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 27 21:54 EDT 2021. Contains 348290 sequences. (Running on oeis4.)