Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #28 Feb 01 2018 03:43:06
%S 0,2,3,10,5,17,21,42,48,97,132,229,325,555,818,1338,2023,3266,4997,
%T 7965,12309,19494,30268,47733,74380,116989,182649,286835,448398,
%U 703462,1100531,1725530,2700789,4232985,6627381,10384834,16261944,25478185,39901540,62509797
%N a(n) = a(n-2) + a(n-3) + 2*a(n-4), with a(1) = 0, a(2) = 2, a(3) = 3, a(4) = 10.
%C According to the reference, p divides a(p) for every prime p.
%H Reinhard Zumkeller, <a href="/A175899/b175899.txt">Table of n, a(n) for n = 1..1000</a>
%H Eric Pite, <a href="http://www.jstor.org/stable/10.4169/002557010x521877">Problem 1851</a>, Mathematics Magazine 83 (2010) 303.
%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (0, 1, 1, 2).
%F G.f.: x*(-2*x-3*x^2-8*x^3)/(-1+x^2+x^3+2*x^4). - _Harvey P. Dale_, Jul 24 2011
%F a(n) = n*sum(k=1..n/2, sum(j=0..k, binomial(j,n-4*k+2*j)*2^(k-j) * binomial(k,j))/k), n>0. - _Vladimir Kruchinin_, Oct 21 2011
%p a:= n-> (<<0|1|0|0>, <0|0|1|0>, <0|0|0|1>, <2|1|1|0>>^n.
%p <<4,0,2,3>>)[1, 1]:
%p seq(a(n), n=1..50); # _Alois P. Heinz_, Oct 21 2011
%t LinearRecurrence[{0,1,1,2},{0,2,3,10},40] (* _Harvey P. Dale_, Jul 24 2011 *)
%o (Maxima) a(n):=n*sum(sum(binomial(j,n-4*k+2*j)*2^(k-j)*binomial(k,j), j,0,k)/k, k,1,n/2); /* _Vladimir Kruchinin_, Oct 21 2011 */
%o (Haskell)
%o a175899 n = a175899_list !! (n-1)
%o a175899_list = 0 : 2 : 3 : 10 : zipWith (+) (map (* 2) a175899_list)
%o (zipWith (+) (tail a175899_list) (drop 2 a175899_list))
%o -- _Reinhard Zumkeller_, Mar 23 2012
%Y Cf. A001608, A001634.
%K nonn,easy
%O 1,2
%A _John W. Layman_, Oct 11 2010