The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A213910 Irregular triangle read by rows: T(n,k) is the number of involutions of length n that have exactly k inversions; n>=0, 0<=k<=binomial(n,2). 2
 1, 1, 1, 1, 1, 2, 0, 1, 1, 3, 1, 2, 1, 1, 1, 1, 4, 3, 3, 4, 2, 4, 1, 3, 0, 1, 1, 5, 6, 5, 9, 5, 10, 5, 9, 4, 7, 3, 3, 2, 1, 1, 1, 6, 10, 9, 16, 13, 19, 17, 19, 19, 17, 19, 13, 17, 7, 13, 3, 8, 1, 4, 0, 1, 1, 7, 15, 16, 26, 29, 34, 43, 39, 54, 41, 61, 40, 62, 36, 58, 28, 47, 21, 34, 15, 21, 10, 11, 6, 4, 3, 1, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,6 COMMENTS Row sums are A000085. Sum_{k>=0} T(n,k)*k = A211606(n). Diagonal is A214086. LINKS Alois P. Heinz, Rows n = 0..40, flattened FORMULA T(n,k) = T(n-1,k) + Sum_{j=1..n-1} T(n-2,k-2*(n-j)+1) for n>=0, k>0; T(n,k) = 0 for n<0 or k<0; T(n,0) = 1 for n>=0. - Alois P. Heinz, Mar 07 2013 EXAMPLE T(4,3) = 2 because we have: (3,2,1,4), (1,4,3,2). Triangle T(n,k) begins:   1;   1;   1, 1;   1, 2, 0, 1;   1, 3, 1, 2, 1, 1,  1;   1, 4, 3, 3, 4, 2,  4, 1, 3, 0, 1;   1, 5, 6, 5, 9, 5, 10, 5, 9, 4, 7, 3, 3, 2, 1, 1;   ... MAPLE T:= proc(n) option remember; local f, g, j; if n<2 then 1 else       f, g:= [T(n-1)], [T(n-2)]; for j to 2*n-3 by 2 do       f:= zip((x, y)->x+y, f, [0\$j, g[]], 0) od; f[] fi     end: seq(T(n), n=0..10);  # Alois P. Heinz, Mar 05 2013 MATHEMATICA Table[Distribution[Map[Inversions, Involutions[n]], Range[0, Binomial[n, 2]]], {n, 0, 9}]//Flatten CROSSREFS Cf. A008302 (permutations of [n] with k inversions). Sequence in context: A124035 A204184 A157897 * A288002 A140129 A029347 Adjacent sequences:  A213907 A213908 A213909 * A213911 A213912 A213913 KEYWORD nonn,tabf AUTHOR Geoffrey Critzer, Mar 04 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 19 10:57 EDT 2021. Contains 345127 sequences. (Running on oeis4.)