login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A211606
Total number of inversions over all involutions of length n.
7
0, 0, 1, 5, 26, 110, 490, 2086, 9240, 40776, 185820, 855580, 4048616, 19455800, 95773496, 479581480, 2454041920, 12776826816, 67849286160, 366455145936, 2015621873440, 11268605368160, 64074235576736, 370040657037920, 2171138049287296, 12928631894588800, 78139702237771200
OFFSET
0,4
REFERENCES
R. Sedgewick and P. Flajolet, Analysis of Algorithms, Addison Wesley, 1996, page 339.
LINKS
FORMULA
From Alois P. Heinz, Feb 12 2013: (Start)
a(n) = a(n-1) + (n-1)*a(n-2) + A000085(n-2)*(n-1)^2 for n>1; a(0) = a(1) = 0.
a(n) = (n*(n-2)*(9*n-7) *a(n-1) +n*(n-1)*(9*n^2-13*n+2) *a(n-2))/ ((n-2)*(9*n^2-31*n+24)) for n>=3; a(n) = n*(n-1)/2 for n<3.
E.g.f.: (x^2/2 + x^3/3 + x^4/4) * exp(x + x^2/2).
(End)
a(n) ~ sqrt(2)/8 * n^(n/2+2)*exp(sqrt(n)-n/2-1/4) * (1-3/(8*sqrt(n))). - Vaclav Kotesovec, Aug 15 2013
EXAMPLE
a(3) = 5 because in the involutions of {1,2,3}: (given in word form) 213, 321, 132, 123, there are respectively 1 + 3 + 1 + 0 = 5 inversions.
MAPLE
a:= proc(n) option remember; `if`(n<3, n*(n-1)/2,
n*((n-2)*(9*n-7) *a(n-1) +(n-1)*(9*n^2-13*n+2) *a(n-2))/
((n-2)*(9*n^2-31*n+24)))
end:
seq(a(n), n=0..30); # Alois P. Heinz, Feb 12 2013
MATHEMATICA
(* first do *) Needs["Combinatorica`"] // Quiet (* then *)
Table[Total[Map[Inversions, Involutions[n]]], {n, 0, 10}]
a[ n_] := If[ n < 0, 0, n! SeriesCoefficient[ (x^2/2 + x^3/3 + x^4/4) Exp[x + x^2/2], {x, 0, n}]]; (* Michael Somos, Jun 03 2019 *)
PROG
(PARI) {a(n) = if( n<0, 0, n! * polcoeff( (x^2/2 + x^3/3 + x^4/4) * exp(x + x^2/2 + x * O(x^n)), n))}; /* Michael Somos, Jun 03 2019 */
CROSSREFS
KEYWORD
nonn
AUTHOR
Geoffrey Critzer, Feb 10 2013
EXTENSIONS
a(13)-a(15) from Alois P. Heinz, Feb 10 2013
Further terms from Alois P. Heinz, Feb 12 2013
STATUS
approved