The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A124025 Recursive polynomial from a tridiagonal matrix version of A123965: p(k, x) = ((x - b(k - 1))*p(k - 1, x) - a(k - 2) *p(k - 2, x))/a(n - 1); a(n)=-1;b(n)=3;. 1

%I

%S 1,3,-1,8,-6,1,21,-25,9,-1,55,-90,51,-12,1,144,-300,234,-86,15,-1,377,

%T -954,951,-480,130,-18,1,987,-2939,3573,-2305,855,-183,21,-1,2584,

%U -8850,12707,-10008,4740,-1386,245,-24,1,6765,-26195,43398,-40426,23373,-8715,2100,-316,27,-1,17711,-76500,143682

%N Recursive polynomial from a tridiagonal matrix version of A123965: p(k, x) = ((x - b(k - 1))*p(k - 1, x) - a(k - 2) *p(k - 2, x))/a(n - 1); a(n)=-1;b(n)=3;.

%D Joanne Dombrowski, Tridiagonal matrix representations of cyclic selfadjoint operators, Pacific J. Math. 114, no. 2 (1984), 325-334

%F Recursive polynomial from a tridiagonal matrix version of A123965 ( first number different): p(k, x) = ((x - b(k - 1))*p(k - 1, x) - a(k - 2)*p(k - 2, x))/a(n - 1); a(n)=-1;b(n)=3;

%t b[k_] = 3; a[k_] = -1; p[0, x] = 1; p[1, x] = (x - b[1])/a[1]; p[k_, x_] := p[k, x] = ((x - b[k - 1])*p[k - 1, x] - a[k - 2]*p[k - 2, x])/a[k - 1]; w = Table[CoefficientList[p[n, x], x], {n, 0, 10}]; Flatten[w]

%Y Cf. A101950, A104562, A123965.

%K uned,sign

%O 1,2

%A _Roger L. Bagula_, Oct 31 2006

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 5 13:14 EDT 2020. Contains 333241 sequences. (Running on oeis4.)