login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A132411 a(0) = 0, a(1) = 1 and a(n) = n^2 - 1 with n>=2. 14
0, 1, 3, 8, 15, 24, 35, 48, 63, 80, 99, 120, 143, 168, 195, 224, 255, 288, 323, 360, 399, 440, 483, 528, 575, 624, 675, 728, 783, 840, 899, 960, 1023, 1088, 1155, 1224, 1295, 1368, 1443, 1520, 1599, 1680, 1763, 1848, 1935, 2024, 2115, 2208, 2303, 2400, 2499 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Sequence allows us to find X values of the equation: X^3 - (X + 1)^2 + X + 2 = Y^2.

To prove that X = 1 or X = n^2 - 1: Y^2 = X^3 - (X + 1)^2 + X + 2 = X^3 - X^2 - X + 1 = (X + 1)(X^2 - 2X + 1) = (X + 1)*(X - 1)^2 it means: X = 1 or (X + 1) must be a perfect square, so X = 1 or X = n^2 - 1 with n>=1. which gives: (X, Y) = (0, 1) or (X, Y) = (1, 0) or (X, Y) = (n^2 - 1, n*(n^2 - 2))with n>=2.

An equivalent technique of integer factorization would work for example for the equation X^3+3*X^2-9*X+5=(X+5)(X-1)^2=Y^2, looking for perfect squares of the form X+5=n^2. Another example is X^3+X^2-5*X+3=(X+3)*(X-1)^2=Y^2 with solutions generated from perfect squares of the form X+3=n^2. - R. J. Mathar, Nov 20 2007

a(n) = A170949(A002522(n-1)) for n>0. - Reinhard Zumkeller, Mar 08 2010

Sum of possible divisors of a prime number up to its square root, with duplicate entries removed. - Odimar Fabeny, Aug 25 2010

a(0) = 0, a(1) = 1 and a(n) is the smallest k different from n such that n divides k and n+1 divides k+1. - Michel Lagneau, Apr 27 2013

The identity (4*n^2-2)^2-(n^2-1)*(4*n)^2=4 can be written as A060626(n+1)^2-a(n+2)*A008586(n+2)^2 = 4. - Vincenzo Librandi, Jun 16 2014

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (3, -3, 1).

FORMULA

a(n) = A005563(n-1), n>1.

G.f.: x+x^2*(-3+x)/(-1+x)^3. - R. J. Mathar, Nov 20 2007

Starting (1, 3, 8, 15, 24,...) = binomial transform of [1, 2, 3, -1, 1, -1,...]. - Gary W. Adamson, May 12 2008

Sum(n>0, 1/a(n)) = 7/4. - Enrique Pérez Herrero, Dec 18 2015

EXAMPLE

0^3 - 1^2 + 2 = 1^2, 1^3 - 2^2 + 3 = 0^2, 3^3 - 4^2 + 5 = 4^2.

For P(n) = 29 we have sqrt(29) = 5.3851 then possible divisors are 3 and 5; for P(n) = 53 we have sqrt(53) = 7.2801 then possible divisors are 3, 5 and 7. [Odimar Fabeny, Aug 25 2010]

MAPLE

for n from 1 to 100 do :ii :=0 :for k from 1 to 20000 while(ii=0) do: if n<>k and irem(k, n)=0 and irem(k+1, n+1)=0 then printf(`%d, `, k):ii:=1:else fi:od:od: # Michel Lagneau, Apr 27 2013

MATHEMATICA

Join[{0, 1}, LinearRecurrence[{3, -3, 1}, {3, 8, 15}, 80]] (* and *) Table[If[n < 2, n, n^2 - 1], {n, 0, 80}] (* Vladimir Joseph Stephan Orlovsky, Feb 14 2012 *)

Join[{0, 1}, Range[2, 50]^2-1] (* Harvey P. Dale, Feb 27 2013 *)

CoefficientList[Series[x + x^2 (-3 + x)/(-1 + x)^3, {x, 0, 60}], x] (* Vincenzo Librandi, May 01 2014 *)

PROG

(MAGMA) [0, 1] cat [n^2 - 1: n in [2..60]]; // Vincenzo Librandi, May 01 2014

(PARI) concat(0, Vec(x+x^2*(-3+x)/(-1+x)^3 + O(x^100))) \\ Altug Alkan, Dec 18 2015

(PARI) a(n)=if(n>1, n^2-1, n) \\ Charles R Greathouse IV, Dec 18 2015

CROSSREFS

Cf. A028560, A005563.

Sequence in context: A013648 A258837 A131386 * A005563 A067998 A066079

Adjacent sequences:  A132408 A132409 A132410 * A132412 A132413 A132414

KEYWORD

nonn,easy

AUTHOR

Mohamed Bouhamida (bhmd95(AT)yahoo.fr), Nov 12 2007

EXTENSIONS

Simplified definition. - N. J. A. Sloane, Sep 05 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 11 15:43 EST 2017. Contains 295905 sequences.