OFFSET
1,2
COMMENTS
The integers are written in blocks of lengths 1, 3, 5, 7, 9, ... . The first number in the block is moved to the center of the block, and then the numbers are written alternately to the left and the right. The block of length 2n-1 ends with n^2, which is not moved.
Let S = Sum_{i >= 1} s(i) be a not necessarily converging series and let T = Sum_{i >= 1} s(a(i)). Then if S converges so does T. On the other hand there are examples where T converges but S does not (for example S = 1 + 1 + 0 - 1 + 1/2 + 1/2 + 0 - 1/2 - 1/2 + 1/3 (3 times) + 0 - 1/3 (3 times) + 1/5 (5 times) + 0 - 1/5 (5 times) + ...). [Conway]
From Reinhard Zumkeller, Mar 08 2010: (Start)
The sum of the rows is n^3+(n+1)^3 [A005898] (1,9,35,91,189,...). - Vincenzo Librandi, Feb 22 2010
REFERENCES
J. H. Conway, Personal communication, Feb 19 2010
LINKS
R. Zumkeller, Table of n, a(n) for n = 1..10000
EXAMPLE
1
3 2 4
8 6 5 7 9
15 13 11 10 12 14 16
24 22 20 18 17 19 21 23 25
35 33 31 29 27 26 28 30 32 34 36
48 46 44 42 40 38 37 39 41 43 45 47 49
63 61 59 57 55 53 51 50 52 54 56 58 60 62 64
80 78 76 74 72 70 68 66 65 67 69 71 73 75 77 79 81
MATHEMATICA
row[n_] := Join[ro = Range[n^2-1, (n-1)^2+1, -2], Reverse[ro]-1, {n^2}];
Array[row, 9] // Flatten (* Jean-François Alcover, Aug 02 2018 *)
PROG
(Haskell)
a170949 n k = a170949_tabf !! (n-1) !! (k-1)
a170949_row n = a170949_tabf !! (n-1)
a170949_tabf = [1] : (map fst $ iterate f ([3, 2, 4], 3)) where
f (xs@(x:_), i) = ([x + i + 2] ++ (map (+ i) xs) ++ [x + i + 3], i + 2)
a170949_list = concat a170949_tabf
-- Reinhard Zumkeller, Jan 31 2014
CROSSREFS
KEYWORD
AUTHOR
N. J. A. Sloane, Feb 21 2010
STATUS
approved