The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A215652 Exponential Riordan array [exp(x*exp(-x)),x]. 5
 1, 1, 1, -1, 2, 1, -2, -3, 3, 1, 9, -8, -6, 4, 1, -4, 45, -20, -10, 5, 1, -95, -24, 135, -40, -15, 6, 1, 414, -665, -84, 315, -70, -21, 7, 1, 49, 3312, -2660, -224, 630, -112, -28, 8, 1, -10088, 441, 14904, -7980, -504, 1134, -168, -36, 9, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS For commuting lower unitriangular matrices A and B we define A raised to the matrix power B, denoted A^^B, to be the matrix Exp(B*Log(A)). Here Exp denotes the matrix exponential and the matrix logarithm Log(A) is defined as sum {n >= 1} (-1)^(n+1)*(A-1)^n/n. Call the present triangle X and let P denote Pascal's triangle A007318. Then X solves the matrix equation X^^P = P. Equivalently, the infinite tower of matrix powers X^^(X^^(X^^(....))) equals P. Note that the infinite tower of powers P^^(P^^(P^^(...))) of the Pascal triangle equals the hyperbinomial array A088956. Thus we might view the present array as the hypobinomial triangle. LINKS Table of n, a(n) for n=0..54. G. Helms, Pascalmatrix tetrated FORMULA T(n,k) = binomial(n,k)*A003725(n-k). The triangle equals P^^Q, where P is Pascal's triangle and Q is the inverse of P. Column 0 equals A003725. E.g.f.: exp(x*t)*exp(x*exp(-x)) = 1 + (1 + t)*x + (-1 + 2*t + t^2)*x^2/2! + (-2 - 3*t + 3*t^2 + t^3)*x^3/3! + .... The infinitesimal generator for this triangle is the generalized exponential Riordan array [x*exp(-x),x], which factors as [x,x]*[exp(-x),x] = A132440*A007318^(-1). The infinitesimal generator begins ..0 ..1....0 .-2....2....0 ..3...-6....3....0 .-4...12..-12....4....0 This is a signed version of the triangle of denominators from Leibniz's harmonic triangle - see A003506. EXAMPLE Triangle begins .n\k.|....0.....1.....2.....3.....4.....5.....6.....7 = = = = = = = = = = = = = = = = = = = = = = = = = = = ..0..|....1 ..1..|....1.....1 ..2..|...-1.....2.....1 ..3..|...-2....-3.....3.....1 ..4..|....9....-8....-6.....4.....1 ..5..|...-4....45...-20...-10.....5.....1 ..6..|..-95...-24...135...-40...-15.....6.....1 ..7..|..414..-665...-84...315...-70...-21.....7.....1 ... MATHEMATICA max = 9; MapIndexed[ Take[#1, #2[[1]]]&, CoefficientList[ Series[ Exp[x*t]*Exp[x*Exp[-x]], {x, 0, max}, {t, 0, max}], {x, t}]*Range[0, max]!, 1] // Flatten (* Jean-François Alcover, Jan 08 2013 *) CROSSREFS Cf. A003506, A003725 (column 0), A007318, A088956. Sequence in context: A109449 A129570 A238385 * A305715 A165014 A358871 Adjacent sequences: A215649 A215650 A215651 * A215653 A215654 A215655 KEYWORD sign,easy,tabl AUTHOR Peter Bala, Sep 11 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 5 09:44 EST 2024. Contains 370545 sequences. (Running on oeis4.)