login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A234505 a(n) = 2*binomial(9*n+2,n)/(9*n+2). 9
1, 2, 19, 252, 3885, 65274, 1159587, 21421248, 407337153, 7920326700, 156753610013, 3147328992080, 63951322669065, 1312575792628356, 27172514322677625, 566707337222428800, 11896007334177739113, 251142622845893276190, 5328891499524964282170 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
Fuss-Catalan sequence is a(n,p,r) = r*binomial(np+r,n)/(np+r), where p=9, r=2.
LINKS
J-C. Aval, Multivariate Fuss-Catalan Numbers, arXiv:0711.0906 [math.CO], 2007; Discrete Math., 308 (2008), 4660-4669.
Thomas A. Dowling, Catalan Numbers Chapter 7
Wojciech Mlotkowski, Fuss-Catalan Numbers in Noncommutative Probability, Docum. Mathm. 15: 939-955.
Sheng-liang Yang and Mei-yang Jiang, Pattern avoiding problems on the hybrid d-trees, J. Lanzhou Univ. Tech., (China, 2023) Vol. 49, No. 2, 144-150. (in Mandarin)
FORMULA
G.f. satisfies: B(x) = {1 + x*B(x)^(p/r)}^r, where p=9, r=2.
a(n) = 2*binomial(9n+1,n-1)/n for n>0, a(0)=1. [Bruno Berselli, Jan 19 2014]
MATHEMATICA
Table[2 Binomial[9 n + 2, n]/(9 n + 2), {n, 0, 30}]
PROG
(PARI) a(n) = 2*binomial(9*n+2, n)/(9*n+2);
(PARI) {a(n)=local(B=1); for(i=0, n, B=(1+x*B^(9/2))^2+x*O(x^n)); polcoeff(B, n)}
(Magma) [2*Binomial(9*n+2, n)/(9*n+2): n in [0..30]];
CROSSREFS
Sequence in context: A211886 A125632 A124125 * A239108 A191806 A349721
KEYWORD
nonn
AUTHOR
Tim Fulford, Dec 27 2013
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 14 16:00 EDT 2024. Contains 374322 sequences. (Running on oeis4.)