The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A322634 Sum of attendance numbers of all histories of length 5*n in the Bizley-Duchon's club model, divided by 5. 2
 5, 153, 4537, 133189, 3891675, 113415423, 3299905647 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS The Bizley-Duchon's club model is equivalent to the lattice paths from (0,0) to (3*n,2*n) described in A293946. The attendance history of the club consists of persons entering in pairs and leaving in groups of three. The club closes when no persons are remaining. a(k)/A293946(k) is proportional to the mean area under the "filling level curve" of the club. Banderier et al. show that the mean area is asymptotic to K*n^(3/2), with K=(1/2)*(15*Pi)^(1/2). LINKS Cyril Banderier, Bernhard Gittenberger, Analytic Combinatorics of Lattice Paths: Enumeration and Asymptotics for the Area. Chassaing, Philippe and others. Fourth Colloquium on Mathematics and Computer Science Algorithms, Trees, Combinatorics and Probabilities, 2006, Nancy, France. Discrete Mathematics and Theoretical Computer Science, DMTCS Proceedings vol. AG, Fourth Colloquium on Mathematics and Computer Science Algorithms, Trees, Combinatorics and Probabilities, pp.345-356, 2006, DMTCS Proceedings. Cyril Banderier, Michael Wallner, Lattice paths of slope 2/5, arXiv:1605.02967 [cs.DM], 10 May 2016. EXAMPLE a(1) = (15 + 10)/5 = 5:   Contributions of the A293946(1) = 2 attendance histories are   0 (+2) 2 (+2) 4 (+2) 6 (-3) 3 (-3) 0 -> 2 + 4 + 6 + 3 = 15   0 (+2) 2 (+2) 4 (-3) 1 (+2) 3 (-3) 0 -> 2 + 4 + 1 + 3 = 10. CROSSREFS Cf. A060941, A293946. Sequence in context: A105230 A222768 A208578 * A108535 A265123 A237527 Adjacent sequences:  A322631 A322632 A322633 * A322635 A322636 A322637 KEYWORD nonn,more AUTHOR Hugo Pfoertner, Dec 22 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 21 18:19 EST 2022. Contains 350479 sequences. (Running on oeis4.)