login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A322631
a(n) = 2*binomial(7*n-1,2*n)/(7*n-1).
4
5, 110, 3876, 164450, 7713420, 385300240, 20096692635, 1081790956890, 59647783837425, 3351648108957720, 191230475831922200, 11049110585626417200, 645189590847792998601, 38014810319396501088720, 2257261555792984515847380, 134939208350635886836436490
OFFSET
1,1
COMMENTS
In 2012, Nakamigawa and Tokushige stated: Let A[x,y] = number of lattice paths starting at (0,0) that stay in y < 2*x/5 + 2/5 and B[x,y] = number of lattice paths starting at (0,0) that stay in y < 2*x/5 + 1/5, then a(t) = A[5*t-1,2*t-1] + B[5*t-1,2*t-1]. Their theorem was mentioned by D. Knuth in Problem 4 "Lattice Paths of Slope 2/5" in his lecture "Problems That Philippe (Flajolet) Would Have Loved". Knuth reported the empirical observation that A[5*t-1,2*t-1]/B[5*t-1,2*t-1] = a - b/t + O(t^-2), with constants a~=1.63026 and b~=0.159. Knuth's conjecture was proved by C. Banderier and M. Wallner, who also found the exact values of a and b. Numerical values of a and b are provided in A322632 and A322633.
LINKS
Cyril Banderier, Michael Wallner, Lattice paths of slope 2/5, arXiv:1605.02967 [cs.DM], 10 May 2016.
D. E. Knuth, Problems That Philippe Would Have Loved, Paris 2014.
Tomoki Nakamigawa, Norihide Tokushige, Counting Lattice Paths via a New Cycle Lemma, SIAM J. Discrete Math., 26(2):745-754, 2012.
FORMULA
From Robert Israel, Dec 23 2018: (Start)
7*(7*n + 4)*(7*n + 1)*(7*n + 5)*(7*n + 2)*(7*n - 1)*(7*n + 3)*a(n) - 10*(5*n + 1)*(5*n + 2)*(2*n + 1)*(5*n + 3)*(5*n + 4)*(n + 1)*a(n + 1) = 0.
G.f.: 5*x*hypergeom([6/7, 1, 8/7, 9/7, 10/7, 11/7, 12/7], [6/5, 7/5, 3/2, 8/5, 9/5, 2], (823543*x)*1/12500)
a(n) ~ sqrt(35/Pi)*(823543/12500)^n/(49*n^(3/2)). (End)
EXAMPLE
A[i,0] = B[i,0] = 1.
A[i,j] = if 5*j < 2*i + 2 then A[i-1,j] + A[i,j-1] , else 0.
\i 1 2 3 4 5 6 7 8 9 10 11 12 13 14
j --------------------------------------------------------
0| 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1| 0 1 2 3 4 5 6 7 8 9 10 11 12 13
2| 0 0 0 0 4 9 15 22 30 39 49 60 72 85
3| 0 0 0 0 0 0 15 37 67 106 155 215 287 372
4| 0 0 0 0 0 0 0 0 0 106 261 476 763 1135
5| 0 0 0 0 0 0 0 0 0 0 0 476 1239 2374
.
B[i,j] = if 5*j < 2*i + 1 then B[i-1,j] + B[i,j-1], else 0.
\i 1 2 3 4 5 6 7 8 9 10 11 12 13 14
j --------------------------------------------------------
0| 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1| 0 0 1 2 3 4 5 6 7 8 9 10 11 12
2| 0 0 0 0 3 7 12 18 25 33 42 52 63 75
3| 0 0 0 0 0 0 0 18 43 76 118 170 233 308
4| 0 0 0 0 0 0 0 0 0 76 194 364 597 905
5| 0 0 0 0 0 0 0 0 0 0 0 0 597 1502
.
A+B:
\i 1 2 3 4 5 6 7 8 9 10 11 12 13 14
j --------------------------------------------------------
0| 2 2 2 2 2 2 2 2 2 2 2 2 2 2
1| 0 1 3 5 7 9 11 13 15 17 19 21 23 25
2| 0 0 0 0 7 16 27 40 55 72 91 112 135 160
3| 0 0 0 0 0 0 15 55 110 182 273 385 520 680
4| 0 0 0 0 0 0 0 0 0 182 455 840 1360 2040
5| 0 0 0 0 0 0 0 0 0 0 0 476 1836 3876
.
t = 1: a(1) = 5 because
A[5*1-1,2*1-1] = A[4,1] = 3, B[4,1] = 2, A[4,1]+B[4,1] = 5;
t = 2: a(2) = 110 because
A[5*2-1,2*2-1] = A[9,3] = 67, B[9,3] = 43, A[9,3]+B[9,3] = 110;
t = 3: a(3) = 3876 because
A[5*3-1,2*3-1] = A[14,5] = 2374, B[14,5] = 1502, A[14,5]+B[14,5] = 3876.
MAPLE
a:=n->2*binomial(7*n-1, 2*n)/(7*n-1): seq(a(n), n=1..20); # Muniru A Asiru, Dec 21 2018
PROG
(PARI) for(t=1, 16, print1(binomial(7*t-1, 2*t)*(2/(7*t-1)), ", "))
CROSSREFS
KEYWORD
nonn,changed
AUTHOR
Hugo Pfoertner, Dec 21 2018
STATUS
approved