login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A294965
Denominators of the partial sums of the reciprocals of the numbers (k + 1)*(6*k + 5) = A049452(k+1).
3
5, 110, 5610, 258060, 1496748, 17462060, 715944460, 67298779240, 32101517697480, 378797908830264, 24621864073967160, 1748152349251668360, 1748152349251668360, 145096644987888473880, 2582720280784414835064, 490716853349038818662160, 49562402188252920684878160
OFFSET
0,1
COMMENTS
The corresponding numerators are given in A294964. There details are found.
LINKS
FORMULA
a(n) = denominator(V(6,5;n)) with V(6,5;n) = Sum_{k=0..n} 1/((k + 1)*(6*k + 5)) = Sum_{k=0..n} 1/A049452(k+1) = Sum_{k=0..n} (1/(k + 5/6) - 1/(k + 1)).
EXAMPLE
For the rationals V(6,5;n) see A294964.
MAPLE
map(denom, ListTools:-PartialSums([seq(1/(k+1)/(6*k+5), k=0..20)])); # Robert Israel, Nov 29 2017
PROG
(PARI) a(n) = denominator(sum(k=0, n, 1/((k + 1)*(6*k + 5)))); \\ Michel Marcus, Nov 27 2017
CROSSREFS
Sequence in context: A053133 A203367 A322631 * A219161 A367248 A284461
KEYWORD
nonn,frac,easy
AUTHOR
Wolfdieter Lang, Nov 27 2017
STATUS
approved