OFFSET
0,2
COMMENTS
The corresponding denominators are given in A294965.
For the general case V(m,r;n) = Sum_{k=0..n} 1/((k + 1)*(m*k + r)) = (1/(m - r))*Sum_{k=0..n} (m/(m*k + r) - 1/(k+1)), for r = 1, ..., m-1 and m = 2, 3, ..., and their limits see a comment in A294512. Here [m,r] = [6,5].
The limit of the series is V(6,5) = lim_{n -> oo} V(6,5;n) = . The value is (3/2)*log(3) + 2*log(2) - (1/2)*Pi*sqrt(3) = 0.3135137477... given in A294966.
REFERENCES
Max Koecher, Klassische elementare Analysis, Birkhäuser, Basel, Boston, 1987, Eulersche Reihen, pp. 189 - 193.
LINKS
Robert Israel, Table of n, a(n) for n = 0..640
Eric Weisstein's World of Mathematics, Digamma Function
FORMULA
EXAMPLE
The rationals V(6,5;n), n >= 0, begin: 1/5, 27/110, 1487/5610, 71207/258060, 423323/1496748, 5021921/17462060, 208393341/715944460, 19767960169/67298779240, 9496615779853/32101517697480, ...
V(6,5;10^6) = 0.313513577 (Maple, 10 digits) to be compared with the rounded ten digits 0.3135137478 obtained from V(6,5) given in A294966.
MAPLE
map(numer, ListTools:-PartialSums([seq(1/(k+1)/(6*k+5), k=0..20)])); # Robert Israel, Nov 29 2017
MATHEMATICA
Table[Numerator[Sum[1/((k+1)*(6*k+5)), {k, 0, n}]], {n, 0, 25}] (* G. C. Greubel, Aug 29 2018 *)
PROG
(PARI) a(n) = numerator(sum(k=0, n, 1/((k + 1)*(6*k + 5)))); \\ Michel Marcus, Nov 27 2017
(Magma) [Numerator((&+[1/((k+1)*(6*k+5)): k in [0..n]])): n in [0..25]]; // G. C. Greubel, Aug 29 2018
CROSSREFS
KEYWORD
nonn,frac,easy
AUTHOR
Wolfdieter Lang, Nov 27 2017
STATUS
approved