login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A294964
Numerators of the partial sums of the reciprocals of the positive numbers (k + 1)*(6*k + 5) = A049452(k+1).
3
1, 27, 1487, 71207, 423323, 5021921, 208393341, 19767960169, 9496615779853, 112702096556215, 7360072449683999, 524616965933727859, 526363371877036219, 43813027890740553917, 781806518388353706041, 148866078528885256002173, 15064339628673236669081953, 538212602352090865654383697
OFFSET
0,2
COMMENTS
The corresponding denominators are given in A294965.
For the general case V(m,r;n) = Sum_{k=0..n} 1/((k + 1)*(m*k + r)) = (1/(m - r))*Sum_{k=0..n} (m/(m*k + r) - 1/(k+1)), for r = 1, ..., m-1 and m = 2, 3, ..., and their limits see a comment in A294512. Here [m,r] = [6,5].
The limit of the series is V(6,5) = lim_{n -> oo} V(6,5;n) = . The value is (3/2)*log(3) + 2*log(2) - (1/2)*Pi*sqrt(3) = 0.3135137477... given in A294966.
REFERENCES
Max Koecher, Klassische elementare Analysis, Birkhäuser, Basel, Boston, 1987, Eulersche Reihen, pp. 189 - 193.
LINKS
Eric Weisstein's World of Mathematics, Digamma Function
FORMULA
a(n) = numerator(V(6,5;n)) with V(6,5;n) = Sum_{k=0..n} 1/((k + 1)*(6*k + 5)) = Sum_{k=0..n} 1/A049452(k+1) = Sum_{k=0..n} (1/(k + 5/6) - 1/(k + 1)) = -Psi(5/6) + Psi(n+11/6) - (gamma + Psi(n+2)) with the digamma function Psi and the Euler-Mascheroni constant gamma = -Psi(1) from A001620.
EXAMPLE
The rationals V(6,5;n), n >= 0, begin: 1/5, 27/110, 1487/5610, 71207/258060, 423323/1496748, 5021921/17462060, 208393341/715944460, 19767960169/67298779240, 9496615779853/32101517697480, ...
V(6,5;10^6) = 0.313513577 (Maple, 10 digits) to be compared with the rounded ten digits 0.3135137478 obtained from V(6,5) given in A294966.
MAPLE
map(numer, ListTools:-PartialSums([seq(1/(k+1)/(6*k+5), k=0..20)])); # Robert Israel, Nov 29 2017
MATHEMATICA
Table[Numerator[Sum[1/((k+1)*(6*k+5)), {k, 0, n}]], {n, 0, 25}] (* G. C. Greubel, Aug 29 2018 *)
PROG
(PARI) a(n) = numerator(sum(k=0, n, 1/((k + 1)*(6*k + 5)))); \\ Michel Marcus, Nov 27 2017
(Magma) [Numerator((&+[1/((k+1)*(6*k+5)): k in [0..n]])): n in [0..25]]; // G. C. Greubel, Aug 29 2018
CROSSREFS
KEYWORD
nonn,frac,easy
AUTHOR
Wolfdieter Lang, Nov 27 2017
STATUS
approved