login
A184689
1/3 the number of n X 4 0..2 arrays with no element equal both to the element above and to the element to its left.
1
27, 1536, 86688, 4890528, 275895264, 15564399648, 878052505824, 49534593003552, 2794452367733472, 157646678048909856, 8893504640414384352, 501719578033435638816, 28304087663951554461408, 1596751280124982805188128
OFFSET
1,1
COMMENTS
Column 4 of A184694.
LINKS
FORMULA
Empirical: a(n) = 61*a(n-1) - 266*a(n-2) + 416*a(n-3) - 256*a(n-4).
Empirical g.f.: 3*x*(9 - 37*x + 58*x^2 - 32*x^3) / (1 - 61*x + 266*x^2 - 416*x^3 + 256*x^4). - Colin Barker, Apr 14 2018
EXAMPLE
Some solutions for 3 X 4 with a(1,1)=0:
..0..0..1..0....0..2..0..1....0..2..0..0....0..1..0..0....0..2..2..1
..2..2..0..2....2..0..2..2....1..2..1..2....2..1..2..1....1..0..1..2
..0..2..0..1....1..2..0..0....2..1..2..1....2..1..0..2....2..0..0..0
CROSSREFS
Cf. A184694.
Sequence in context: A042404 A073224 A294964 * A364993 A059118 A211926
KEYWORD
nonn
AUTHOR
R. H. Hardin, Jan 20 2011
STATUS
approved