login
A354541
Number of ways to tile a double-hexagon strip of n hexagons, using single and double hexagons.
1
1, 1, 2, 4, 8, 12, 24, 48, 72, 144, 288, 432, 864, 1728, 2592, 5184, 10368, 15552, 31104, 62208, 93312, 186624, 373248, 559872, 1119744, 2239488, 3359232, 6718464, 13436928, 20155392, 40310784, 80621568, 120932352, 241864704, 483729408
OFFSET
0,3
COMMENTS
Here is the hexagonal strip for n=9:
____ ____ ____
/ \ / \ / \
____/ 2 \____/ 5 \____/ 8 \
/ \ / \ / \ /
/ 1 \____/ 4 \____/ 7 \____/
\ / \ / \ / \
\____/ 3 \____/ 6 \____/ 9 \
\ / \ / \ /
\____/ \____/ \____/
FORMULA
a(3*n) = a(3*n-1) + a(3*n-2) + a(3*n-3) = 4*6^(n-1).
a(3*n+1) = a(3*n) + 2*a(3*n-1) = 8*6^(n-1).
a(3*n+2) = a(3*n+1) + a(3*n) = 12*6^(n-1).
From Stefano Spezia, Aug 28 2022: (Start)
G.f.: (1 + x + 2*x^2 - 2*x^3 +2*x^4)/(1 - 6*x^3).
a(n) = 6*a(n-3) for n > 4. (End)
From Amiram Eldar, May 28 2024: (Start)
Sum_{n>=0} 1/a(n) = 61/20.
Sum_{n>=0} (-1)^n/a(n) = 9/28. (End)
EXAMPLE
Here is one of the 144 tilings for n=9, this one using three singles and three doubles:
____ ____ ____
/ \ / \ / \
____/ \____/ \____/ \
/ / \ / \ /
/ ____/ \ / \____/
\ / \ / \ \
\____/ \____/ \____ \
\ / \ / \ /
\____/ \____/ \____/
MATHEMATICA
LinearRecurrence[{0, 0, 6}, {1, 1, 2, 4, 8}, 50] (* Paolo Xausa, May 27 2024 *)
CROSSREFS
Sequence in context: A181808 A343014 A097942 * A358513 A004653 A115386
KEYWORD
nonn,easy
AUTHOR
Greg Dresden and Zeno Changze Song, Aug 17 2022
STATUS
approved