OFFSET
0,2
EXAMPLE
1 has no divisors that can be written in the form m + reverse(m), so a(0) = 1.
2 has only the divisor 2 which is written 2 = 1 + reverse(1), so a(1) = 2.
3 has no divisors that can be written in the form m + reverse(m).
4 has divisors 1, 2, 4 but only 2 = 1 + reverse(1) and 4 = 2 + reverse(2), so a(2) = 4.
5 and 7 have no divisors that can be written in the form m + reverse(m), and 6 only has the divisors 2 = 2 + reverse(2) and 6 = 3 + reverse(3).
8 has divisors 1, 2, 4, 8 but only 2 = 1 + reverse(1), 4 = 2 + reverse(2) and 8 = 4 + reverse(4), so a(3) = 8.
MAPLE
rev:= proc(n) local L, i; L:= convert(n, base, 10); add(L[-i]*10^(i-1), i=1..nops(L)) end proc:
S:= select(`<=`, map(t -> t + rev(t), {$1..10^6}), 10^6):
V:= Array(0..49): count:= 0:
for n from 1 to 10^6 while count < 50 do
v:= nops(numtheory:-divisors(n) intersect S);
if v <= 49 and V[v] = 0 then
count:= count+1; V[v]:= n;
fi
od:
convert(V, list); # Robert Israel, Dec 28 2022
PROG
(Magma) rev:=func<n|Seqint(Reverse(Intseq(n)))>; f:=func<n|exists(c){s:s in [0..n]| n eq s+rev(s)}>; a:=[]; for n in [0..25] do k:=1; while #[d:d in Divisors(k)|f(d)] ne n do k:=k+1; end while; Append(~a, k); end for; a;
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Marius A. Burtea, Dec 04 2022
EXTENSIONS
More terms from Robert Israel, Dec 28 2022
STATUS
approved