The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A327607 Number of parts in all twice partitions of n where the first partition is strict. 6
 0, 1, 3, 11, 21, 58, 128, 276, 516, 1169, 2227, 4324, 8335, 15574, 29116, 55048, 97698, 176291, 323277, 563453, 1005089, 1770789, 3076868, 5293907, 9184885, 15668638, 26751095, 45517048, 76882920, 128738414, 217219751, 360525590, 599158211, 995474365 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Alois P. Heinz, Table of n, a(n) for n = 0..4000 EXAMPLE a(3) = 11 = 1+2+3+2+3 counting the parts in 3, 21, 111, 2|1, 11|1. MAPLE g:= proc(n) option remember; (p-> [p(n), add(p(n-j)* numtheory[tau](j), j=1..n)])(combinat[numbpart]) end: b:= proc(n, i) option remember; `if`(i*(i+1)/2 (f-> f+[0, f[1]* h[2]/h[1]])(b(n-i, min(n-i, i-1))*h[1]))(g(i)))) end: a:= n-> b(n\$2)[2]: seq(a(n), n=0..37); MATHEMATICA g[n_] := g[n] = {PartitionsP[n], Sum[PartitionsP[n - j] DivisorSigma[0, j], {j, 1, n}]}; b[n_, i_] := b[n, i] = If[i(i+1)/2 < n, 0, If[n == 0, {1, 0}, Module[{h, f}, h = g[i]; f = b[n - i, Min[n - i, i - 1]] h[[1]]; b[n, i - 1] + f + {0, f[[1]] h[[2]] / h[[1]]}]]]; a[n_] := b[n, n][[2]]; a /@ Range[0, 37] (* Jean-François Alcover, Dec 05 2020, after Alois P. Heinz *) CROSSREFS Cf. A000009, A000041, A271619, A327552, A327594, A327605, A327608. Sequence in context: A064568 A147073 A147191 * A034185 A184053 A240371 Adjacent sequences: A327604 A327605 A327606 * A327608 A327609 A327610 KEYWORD nonn AUTHOR Alois P. Heinz, Sep 18 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 9 12:54 EST 2022. Contains 358700 sequences. (Running on oeis4.)