The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A271622 Expansion of -2/(x*sqrt(4*x+1)+x-2). 2
 1, 1, 2, 2, 5, 2, 18, -19, 115, -296, 1115, -3632, 12868, -44803, 159577, -570455, 2059182, -7476086, 27311129, -100274479, 369888135, -1370063926, 5093782015, -19002596870, 71109902844, -266855928791, 1004045621663, -3786790876945 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 FORMULA a(n) = 1 + Sum_{k=1..n-1} (-1)^(n-k-1)*k*binomial(2*n-3*k-1,n-k-1))/(n-k). a(n) ~ (-1)^n * 2^(2*n+2) / (81*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Apr 11 2016 D-finite with recurrence: (-n+1)*a(n) + 3*(-n+3)*a(n-1) + 2*(2*n-5)*a(n-2) + (n-1)*a(n-3) + 2*(2*n-5)*a(n-4) = 0. - R. J. Mathar, Apr 15 2016 MATHEMATICA Table[1 + (Sum[(k (-1)^(n - k - 1) Binomial[2 n - 3 k - 1, n - k - 1])/(n - k), {k, 1, n - 1}]), {n, 0, 27}] (* or *) CoefficientList[Series[-2/(x Sqrt[4 x + 1] + x - 2), {x, 0, 27}], x] (* Michael De Vlieger, Apr 15 2016 *) PROG (Maxima) a(n):=1+(sum(((-1)^(n-k-1)*k*binomial(2*n-3*k-1, n-k-1))/(n-k), k, 1, n-1)); (PARI) x='x+O('x^99); Vec(-2/(x*sqrt(4*x+1)+x-2)) \\ Altug Alkan, Apr 15 2016 CROSSREFS Cf. A000108. Sequence in context: A114976 A085483 A271654 * A324505 A226135 A284464 Adjacent sequences:  A271619 A271620 A271621 * A271623 A271624 A271625 KEYWORD sign,easy AUTHOR Vladimir Kruchinin, Apr 11 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 20 06:45 EDT 2021. Contains 347577 sequences. (Running on oeis4.)