login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A334377
Irregular triangle read by rows: T(n,k) is the number of partitions of k into distinct parts p such that 2 <= p <= n.
0
1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 2, 2, 2, 2, 3, 2, 3, 2, 2, 2, 2, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 2, 2, 3, 2, 4, 3, 4, 4, 4, 4, 4, 4, 3, 4, 2, 3, 2, 2, 1, 1, 1, 0, 1
OFFSET
2,25
FORMULA
G.f. for row n: Product_{i=2..n} (1+x^i), n >= 2.
EXAMPLE
Irregular triangle begins:
----------------------------------------------------------
n\k | 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
----------------------------------------------------------
2 | 1 0 1
3 | 1 0 1 1 0 1
4 | 1 0 1 1 1 1 1 1 0 1
5 | 1 0 1 1 1 2 1 2 1 2 1 1 1 0 1
6 | 1 0 1 1 1 2 2 2 2 3 2 3 2 2 2 2 1 1 1 0 1
...
For n = 4: T(4,3) = 1 because we have [3], G.f.=1+x^2+x^3+x^4+x^5+x^6+x^7+x^9;
For n = 5: T(5,5) = 2 because we have [5] and [3,2].
G.f. is 1+x^2+x^3+x^4+2x^5+x^6+2x^7+x^8+2x^9+x^10+x^11+x^12+x^14.
MATHEMATICA
trow[n_] := CoefficientList[Product[(1 + x^i), {i, 2, n}], x]; nmax = 10; Table[trow[n], {n, 2, nmax}] // Flatten
CROSSREFS
KEYWORD
tabf,nonn,easy
AUTHOR
Victor Mishnyakov, Elena Lanina, Apr 25 2020
STATUS
approved