Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #57 Dec 27 2024 10:48:22
%S 1,2,3,4,1,6,7,8,9,2,11,12,13,14,3,16,17,18,19,4,21,22,23,24,5,26,27,
%T 28,29,6,31,32,33,34,7,36,37,38,39,8,41,42,43,44,9,46,47,48,49,10,51,
%U 52,53,54,11,56,57,58,59,12,61,62,63,64,13,66,67,68,69
%N a(n) = n / gcd(n,5).
%C As well as being a multiplicative sequence, a(n) is also strong divisibility sequence, that is, gcd(a(n),a(m)) = a(gcd(n,m)) for n, m >= 1. In particular, a(n) is a divisibility sequence: if n divides m then a(n) divides a(m). _Peter Bala_, Feb 20 2019
%H Harry J. Smith, <a href="/A060791/b060791.txt">Table of n, a(n) for n = 1..1000</a>
%H <a href="/index/Rec#order_10">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,0,2,0,0,0,0,-1).
%F G.f.: x*(1 + 2*x + 3*x^2 + 4*x^3 + x^4 + 4*x^5 + 3*x^6 + 2*x^7 + x^8)/(1 - x^5)^2.
%F a(n) = n/5 if 5|n, otherwise a(n) = n.
%F From _R. J. Mathar_, Apr 18 2011: (Start)
%F a(n) = A109046(n)/5.
%F Dirichlet g.f.: zeta(s-1)*(1-4/5^s). (End)
%F G.f.: x*(x^4 + x^3 - x^2 + x + 1)*(x^4 + x^3 + 3*x^2 + x + 1)/((x - 1)^2*(x^4 + x^3 + x^2 + x + 1)^2). - _R. J. Mathar_, Oct 31 2015
%F From _Peter Bala_, Feb 20 2019: (Start)
%F a(n) = numerator(n/(n + 5)).
%F If gcd(n, m) = 1 then a(a(n)*a(m)) = a(a(n)) * a(a(m)), a(a(a(n))*a(a(m))) = a(a(a(n))) * a(a(a(m))) and so on.
%F G.f.: x/(1 - x)^2 - 4*x^5/(1 - x^5)^2. (End)
%F Sum_{k=1..n} a(k) ~ (21/50) * n^2. - _Amiram Eldar_, Nov 25 2022
%F Sum_{n>=1} (-1)^(n+1)/a(n) = 9*log(2)/5. - _Amiram Eldar_, Sep 08 2023
%p seq(n/gcd(n,5),n=1..80); # _Muniru A Asiru_, Feb 20 2019
%t f[n_]:=Numerator[n/(n+5)]; Array[f,100] (* _Vladimir Joseph Stephan Orlovsky_, Feb 16 2011*)
%o (Sage) [lcm(n,5)/5 for n in range(1, 51)] # _Zerinvary Lajos_, Jun 07 2009
%o (PARI) a(n) = { n / gcd(n, 5) } \\ _Harry J. Smith_, Jul 12 2009
%o (PARI) a(n) = n/(5-4*(n%5>0)) \\ _Zak Seidov_, Feb 17 2011
%o (Magma) [n/GCD(n, 5): n in [1..100]]; // _G. C. Greubel_, Feb 20 2019
%o (GAP) List([1..80],n->n/Gcd(n,5)); # _Muniru A Asiru_, Feb 20 2019
%Y Cf. Sequences given by the formula n/gcd(n,k) = numerator(n/(n + k)): A026741 (k = 2), A051176 (k = 3), A060819 (k = 4), A060789 (k = 6), A106608 thru A106612 (k = 7 thru 11), A051724 (k = 12), A106614 thru A106621 (k = 13 thru 20).
%Y Cf. A109046.
%K nonn,mult,easy,changed
%O 1,2
%A _Len Smiley_, Apr 26 2001
%E Extended (using terms from b-file) by _Michel Marcus_, Feb 08 2014