Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #26 Oct 03 2023 16:28:18
%S 2,-2,3,5,-2,18,-19,43,-30,62,-71,111,-82,130,-153,209,-158,222,-265,
%T 337,-258,338,-407,495,-382,478,-579,683,-530,642,-781,901,-702,830,
%U -1013,1149,-898,1042
%N First differences of A060819(n-4)*A060819(n).
%C The sequence b(n) = A060819(n-4)*A060819(n) is -3, -1, -3, 0, 5, 3, 21, 2, 45, 15, 77, 6, 117, 35, 165 for n>=1, an extension of A061037. Its first differences b(n+1)-b(n) = a(n) define the current sequence.
%C First differences of the quadrisection are a(4n+4)-a(4n) = 8+30*n.
%H G. C. Greubel, <a href="/A185688/b185688.txt">Table of n, a(n) for n = 1..1000</a>
%H <a href="/index/Rec#order_11">Index entries for linear recurrences with constant coefficients</a>, signature (-1,-1,-1,2,2,2,2,-1,-1,-1,-1).
%F a(2*n+1) + a(2*n+2) = 8*n.
%F G.f. ( x*(2+3*x^2+8*x^3+24*x^5+24*x^7+8*x^9-4*x^6+6*x^8+3*x^10) ) / ( (x-1)^2*(1+x)^3*(x^2+1)^3 ). - _R. J. Mathar_, Feb 16 2011
%F a(n) = -a(n-1) -a(n-2) -a(n-3) +2*a(n-4) +2*a(n-5) +2*a(n-6) +2*a(n-7) -a(n-8) -a(n-9) -a(n-10) -a(n-11).
%F a(n)=3*a(n-4) -3*a(n-8) +a(n-12). - _Paul Curtz_, Feb 17 2011
%F a(4n) + a(4n+1) +a(4n+2) +a(4n+3) = 2*n = A005843(n). - _Paul Curtz_, Feb 17 2011
%p A060819 := proc(n) n/igcd(n,4) ; end proc:
%p A185688b := proc(n) A060819(n-4)*A060819(n) ; end proc:
%p A185688 := proc(n) A185688b(n+1)-A185688b(n) ; end proc: # _R. J. Mathar_, Feb 16 2011
%t Rest[CoefficientList[Series[(x*(2 + 3*x^2 + 8*x^3 + 24*x^5 + 24*x^7 + 8*x^9 - 4*x^6 + 6*x^8 + 3*x^10))/((x - 1)^2*(1 + x)^3*(x^2 + 1)^3), {x, 0, 50}], x]] (* _G. C. Greubel_, Jul 10 2017 *)
%t LinearRecurrence[{-1,-1,-1,2,2,2,2,-1,-1,-1,-1},{2,-2,3,5,-2,18,-19,43,-30,62,-71},40] (* _Harvey P. Dale_, Oct 03 2023 *)
%o (PARI) Vec((2+3*x^2+8*x^3+24*x^5+24*x^7+8*x^9-4*x^6+6*x^8+3*x^10)/(x-1)^2/(1+x)^3/(x^2+1)^3+O(x^99)) \\ _Charles R Greathouse IV_, Feb 08 2012
%K sign,easy
%O 1,1
%A _Paul Curtz_, Feb 10 2011