Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #22 Jul 01 2018 15:27:27
%S 0,1,1,1,0,1,1,0,0,1,1,0,4,0,1,1,0,5,5,0,1,1,0,6,6,6,0,1,1,0,7,7,7,7,
%T 0,1,1,0,8,8,12,8,8,0,1,1,0,9,9,18,18,9,9,0,1,1,0,10,10,25,30,25,10,
%U 10,0,1,1,0,11,11,33,44,44,33,11,11,0,1
%N Table T(m, n) of number of circular binary strings with m ones and n zeros without zigzags, read by antidiagonals (see reference for precise definition).
%C See page 5, figure 1 in the reference.
%C A zigzag is a substring which is either 010 or 101.
%H Andrew Howroyd, <a href="/A263655/b263655.txt">Table of n, a(n) for n = 0..819</a>
%H E. Munarini and N. Z. Salvi, <a href="http://www.emis.de/journals/INTEGERS/papers/d19/d19.Abstract.html">Circular Binary Strings without Zigzags</a>, Integers: Electronic Journal of Combinatorial Number Theory 3 (2003), #A19.
%F From _Andrew Howroyd_, Feb 26 2017: (Start)
%F T(n,m) = Sum_{k>=0} U(m,k)*U(n,k) - 2*V(m,k)*V(n,k)*(-1)^k
%F where U(r,k)=binomial(r-k+2*floor(k/3), floor(k/3)), V(r,k)=binomial(r-ceiling(k/2)-1, floor(k/2)).
%F T(n,0)=1 for n>=1, T(n,1)=0 for n>=1, T(n,2)=n+2 for n>=2, T(n,3)=n+3 for n>=2.
%F T(n,4)=(n-1)*(n+4)/2 for n>=3, T(n,5)=(n-2)*(n+5) for n>=3. (End)
%e Table starts:
%e 0 1 1 1 1 1 1 1 1 1 1 1 1 ...
%e 1 0 0 0 0 0 0 0 0 0 0 0 0 ...
%e 1 0 4 5 6 7 8 9 10 11 12 13 14 ...
%e 1 0 5 6 7 8 9 10 11 12 13 14 15 ...
%e 1 0 6 7 12 18 25 33 42 52 63 75 88 ...
%e 1 0 7 8 18 30 44 60 78 98 120 144 170 ...
%e 1 0 8 9 25 44 70 104 147 200 264 340 429 ...
%e 1 0 9 10 33 60 104 168 255 368 510 684 893 ...
%e 1 0 10 11 42 78 147 255 412 629 918 1292 1765 ...
%e 1 0 11 12 52 98 200 368 629 1014 1558 2300 3283 ...
%e 1 0 12 13 63 120 264 510 918 1558 2514 3885 5786 ...
%t max = 11;
%t U[r_, k_] := Binomial[r - k + 2*Floor[k/3], Floor[k/3]];
%t V[r_, k_] := Binomial[r - Ceiling[k/2] - 1, Floor[k/2]];
%t T[0, 0] = T[1, 1] = 0;
%t T[0, _] = T[_, 0] = 1;
%t T[n_ /; n >= 2, m_] /; m <= n := T[n, m] = Switch[m, 1, 0, 2, n + 2, 3, n + 3, _, Sum[ U[m, k]*U[n, k] - 2*V[m, k]*V[n, k]*(-1)^k, {k, 0, max-3}]];
%t T[n_, m_] /; m > n := T[m, n];
%t Table[T[n - k, k], {n, 0, max}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Jul 01 2018, after _Andrew Howroyd_ *)
%Y Main diagonal is A263656. Antidiagonal sums are A007039.
%Y Cf. A263657, A263658, A263659.
%K tabl,nonn
%O 0,13
%A _Felix Fröhlich_, Oct 23 2015
%E a(66)-a(77) from _Andrew Howroyd_, Feb 26 2017