login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A263658
Number of (0, 1)-necklaces with n zeros and n ones without zigzags (see reference for precise definition).
5
0, 0, 1, 1, 2, 3, 7, 12, 27, 57, 128, 285, 659, 1518, 3561, 8389, 19936, 47607, 114397, 276018, 669035, 1627491, 3973106, 9728991, 23892779, 58828866, 145201423, 359182693, 890350290, 2211257973, 5501701981, 13711368630, 34225162345, 85555609119, 214166692430, 536810116905
OFFSET
0,5
COMMENTS
See page 16 in the reference.
A zigzag is a substring which is either 010 or 101. The necklaces 01 and 10 are considered to be with a zigzag. Necklaces do not allow turnover.
LINKS
E. Munarini and N. Z. Salvi, Circular Binary Strings without Zigzags, Integers: Electronic Journal of Combinatorial Number Theory 3 (2003), #A19.
FORMULA
a(n) = (1/n) * Sum_{d | n} totient(n/d) * A263656(d) / 2. - Andrew Howroyd, Feb 26 2017
EXAMPLE
For n=2 the necklace is 0011.
For n=3 the necklace is 000111.
For n=4 the necklaces are 00001111, 00110011.
For n=5 the necklaces are 0000011111, 0001110011, 0001100111.
MATHEMATICA
(* b = A263656 *)
b[n_ /; n < 6] := {0, 0, 4, 6, 12, 30}[[n + 1]];
b[n_] := b[n] = (1/n)*(3*(n - 1)*b[n - 1] - 4*(n - 4)*b[n - 2] + (7*n - 27)*b[n - 3] - 6*b[n - 4] + (7*n - 37)*b[n - 5] - 3*(n - 6)*b[n - 6]);
a[0] = 0;
a[n_] := (1/n)*DivisorSum[n, EulerPhi[n/#] * b[#]/2&];
Array[a, 36, 0] (* Jean-François Alcover, Sep 11 2017, after Andrew Howroyd *)
CROSSREFS
Main diagonal of A263657.
Sequence in context: A099163 A000676 A283823 * A296517 A182692 A203837
KEYWORD
nonn
AUTHOR
Felix Fröhlich, Oct 23 2015
EXTENSIONS
Offset corrected and a(21)-a(35) from Andrew Howroyd, Feb 26 2017
STATUS
approved