Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #18 Sep 11 2017 13:34:56
%S 0,0,1,1,2,3,7,12,27,57,128,285,659,1518,3561,8389,19936,47607,114397,
%T 276018,669035,1627491,3973106,9728991,23892779,58828866,145201423,
%U 359182693,890350290,2211257973,5501701981,13711368630,34225162345,85555609119,214166692430,536810116905
%N Number of (0, 1)-necklaces with n zeros and n ones without zigzags (see reference for precise definition).
%C See page 16 in the reference.
%C A zigzag is a substring which is either 010 or 101. The necklaces 01 and 10 are considered to be with a zigzag. Necklaces do not allow turnover.
%H Andrew Howroyd, <a href="/A263658/b263658.txt">Table of n, a(n) for n = 0..100</a>
%H E. Munarini and N. Z. Salvi, <a href="http://www.emis.de/journals/INTEGERS/papers/d19/d19.Abstract.html">Circular Binary Strings without Zigzags</a>, Integers: Electronic Journal of Combinatorial Number Theory 3 (2003), #A19.
%F a(n) = (1/n) * Sum_{d | n} totient(n/d) * A263656(d) / 2. - _Andrew Howroyd_, Feb 26 2017
%e For n=2 the necklace is 0011.
%e For n=3 the necklace is 000111.
%e For n=4 the necklaces are 00001111, 00110011.
%e For n=5 the necklaces are 0000011111, 0001110011, 0001100111.
%t (* b = A263656 *)
%t b[n_ /; n < 6] := {0, 0, 4, 6, 12, 30}[[n + 1]];
%t b[n_] := b[n] = (1/n)*(3*(n - 1)*b[n - 1] - 4*(n - 4)*b[n - 2] + (7*n - 27)*b[n - 3] - 6*b[n - 4] + (7*n - 37)*b[n - 5] - 3*(n - 6)*b[n - 6]);
%t a[0] = 0;
%t a[n_] := (1/n)*DivisorSum[n, EulerPhi[n/#] * b[#]/2&];
%t Array[a, 36, 0] (* _Jean-François Alcover_, Sep 11 2017, after _Andrew Howroyd_ *)
%Y Main diagonal of A263657.
%Y Cf. A007039, A263655, A263656, A263659.
%K nonn
%O 0,5
%A _Felix Fröhlich_, Oct 23 2015
%E Offset corrected and a(21)-a(35) from _Andrew Howroyd_, Feb 26 2017