login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A096747
Triangle read by rows: T(n,1) = 1, T(n,k) = T(n-1,k)+(n-1)*T(n-1,k-1) for 1<=k<=n+1.
2
1, 1, 1, 1, 2, 2, 1, 4, 6, 6, 1, 7, 18, 24, 24, 1, 11, 46, 96, 120, 120, 1, 16, 101, 326, 600, 720, 720, 1, 22, 197, 932, 2556, 4320, 5040, 5040, 1, 29, 351, 2311, 9080, 22212, 35280, 40320, 40320, 1, 37, 583, 5119, 27568, 94852, 212976, 322560, 362880
OFFSET
0,5
COMMENTS
Note: rows continue as factorials - stopped at second factorial for clarity.
T(n,n) = T(n,n+1) = n!. Sum of row n = n! + s(n,2), where s(n,2) are signless Stirling numbers of the first kind (A081046). T(n,k) = A109822(n,k) for 1<=k<=n (i.e. triangle without the last column is A109822). - Emeric Deutsch, Jul 03 2005
Sum(k=0..n-1, T(n,k))/T(n,n-1) are for n>=1 the harmonic numbers A001008(n)/A002805(n). - Peter Luschny, Sep 15 2014
LINKS
Robert Israel, Table of n, a(n) for n = 0..10152 (rows 0..141, flattened)
R. P. Stanley, Ordering events in Minkowski space, arXiv:math/0501256 [math.CO], 2005.
FORMULA
T(n+1, i) = n*T(n, i-1)+T(n, i)
T(n, k) = sum(|stirling1(n, n-i)|, i=0..k-1) for 1<=k<=n. - Emeric Deutsch, Jul 03 2005
E.g.f. as triangle: g(x,y) = Sum_{n>=0} Sum_{1<=k<=n+1} T(n,k) x^n y^k/n! where
g(x,y) = -y^2/((y-1)*(x*y-1)) - (1-x*y)^(-1/y)*(-y+y^2/(y-1)). - Robert Israel, Nov 28 2016
EXAMPLE
Triangle begins:
*0.........................1
*1......................1.....1
*2...................1.....2.....2
*3................1.....4.....6.....6
*4.............1.....7....18....24....24
*5..........1....11....46....96...120...120
*6.......1....16...101...326...600...720...720
*7....1....22...197...932..2556..4320..5040..5040
T(5,3)=46 because 4*7+18=46
MAPLE
T:=proc(n, k) if k=1 then 1 elif k=n+1 then n! else T(n-1, k)+(n-1)*T(n-1, k-1) fi end: for n from 0 to 11 do seq(T(n, k), k=1..n+1) od; # yields sequence in triangular form
with(combinat): T:=(n, k)->sum(abs(stirling1(n, n-i)), i=0..k-1): for n from 0 to 11 do seq(T(n, k), k=1..n+1) od; # yields sequence in triangular form; Emeric Deutsch, Jul 03 2005
MATHEMATICA
T[n_, k_] := Sum[Abs[StirlingS1[n, n - i]], {i, 0, k}]; T[0, 0] := 1;
Table[T[n, k], {n, 0, 15}, {k, 0, n}]//Flatten (* G. C. Greubel, Dec 08 2016 *)
PROG
(Sage)
@CachedFunction
def T(n, k):
if n == 0: return 1
if k < 0: return 0
return T(n-1, k)+(n-1)*T(n-1, k-1)
for n in range(9): print([T(n, k) for k in (0..n)]) # Peter Luschny, Sep 15 2014
CROSSREFS
Sequence in context: A328873 A071946 A053495 * A299504 A300979 A371889
KEYWORD
nonn,easy,tabl
AUTHOR
Thomas J Engelsma (tom(AT)opertech.com), Dec 05 2004
EXTENSIONS
More terms from Emeric Deutsch, Jul 03 2005
STATUS
approved