OFFSET
0,2
FORMULA
a(n) = [x^n] (1/(1 - x))*exp(Sum_{k>=1} n^k*x^k/(k*(1 - x^k))).
a(n) = Sum_{j=0..n} A246935(j,n).
a(n) ~ n^n. - Vaclav Kotesovec, May 04 2018
MAPLE
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
b(n, i-1, k) +`if`(i>n, 0, k*b(n-i, i, k))))
end:
a:= n-> add(b(j$2, n), j=0..n):
seq(a(n), n=0..20); # Alois P. Heinz, May 02 2018
MATHEMATICA
Table[SeriesCoefficient[1/(1 - x) Product[1/(1 - n x^k), {k, 1, n}], {x, 0, n}], {n, 0, 20}]
Table[SeriesCoefficient[1/(1 - x) Exp[Sum[n^k x^k/(k (1 - x^k)), {k, 1, n}]], {x, 0, n}], {n, 0, 20}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, May 02 2018
STATUS
approved