OFFSET
0,19
COMMENTS
A k-ary cactus is a planar k-gonal cactus with vertices on each polygon numbered 1..k counterclockwise with shared vertices having the same number. In total there are always exactly k ways to number a given cactus since all polygons are connected. See the reference for a precise definition. - Andrew Howroyd, Feb 18 2020
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..1274
Miklos Bona, Michel Bousquet, Gilbert Labelle, Pierre Leroux, Enumeration of m-ary cacti, arXiv:math/9804119 [math.CO], 1998-1999.
Wikipedia, Cactus graph
FORMULA
T(n,k) = (Sum_{d|n} mu(n/d)*binomial(k*d, d))/n - (k-1)*binomial(k*n, n)/((k-1)*n+1)) for n > 0.
EXAMPLE
Array begins:
===============================================================
n\k| 1 2 3 4 5 6 7 8
---+-----------------------------------------------------------
0 | 1 1 1 1 1 1 1 1 ...
1 | 1 1 1 1 1 1 1 1 ...
2 | 0 0 0 0 0 0 0 0 ...
3 | 0 1 3 6 10 15 21 28 ...
4 | 0 2 10 28 60 110 182 280 ...
5 | 0 8 54 193 505 1095 2093 3654 ...
6 | 0 18 222 1140 3876 10326 23394 47208 ...
7 | 0 61 1107 7688 33125 107056 285383 662620 ...
8 | 0 170 5346 52364 290700 1149126 3621150 9702008 ...
9 | 0 538 27399 373560 2661100 12845166 47813367 147765409 ...
...
MATHEMATICA
T[0, _] = 1;
T[n_, k_] := DivisorSum[n, MoebiusMu[n/#] Binomial[k #, #] &]/n - (k-1) Binomial[n k, n]/((k-1) n + 1);
Table[T[n-k, k], {n, 0, 12}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, May 22 2018 *)
PROG
(PARI) T(n, k)={if(n==0, 1, sumdiv(n, d, moebius(n/d)*binomial(k*d, d))/n - (k-1)*binomial(k*n, n)/((k-1)*n+1))}
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Andrew Howroyd, May 02 2018
STATUS
approved