login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of n-step 7-dimensional nonnegative lattice walks starting at the origin and using steps that increment all components or decrement one component by 1.
2

%I #7 Jul 12 2021 21:46:37

%S 1,1,8,57,372,2332,14960,102173,732124,5306652,38253888,275352960,

%T 1996376544,14642264736,108536296800,809764874325,6057499056204,

%U 45368515203628,340472040666080,2563725956556584,19381407270110656,147036877912623840,1118355187220657856

%N Number of n-step 7-dimensional nonnegative lattice walks starting at the origin and using steps that increment all components or decrement one component by 1.

%H Alois P. Heinz, <a href="/A346228/b346228.txt">Table of n, a(n) for n = 0..90</a>

%F a(n) == 1 (mod 7).

%p b:= proc(n, l) option remember; `if`(n=0, 1, (k-> `if`(n>min(l),

%p add(`if`(l[i]=0, 0, b(n-1, sort(subsop(i=l[i]-1, l)))),

%p i=1..k)+b(n-1, map(x-> x+1, l)), (k+1)^n))(nops(l)))

%p end:

%p a:= n-> b(n, [0$7]):

%p seq(a(n), n=0..27);

%Y Column k=7 of A335570.

%K nonn,walk

%O 0,3

%A _Alois P. Heinz_, Jul 11 2021