login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Dirichlet convolution of sigma and the Dirichlet inverse of A003961 (A346234).
0

%I #9 Dec 11 2024 15:03:46

%S 1,0,-1,-2,-1,0,-3,-6,-7,0,-1,2,-3,0,1,-14,-1,0,-3,2,3,0,-5,6,-11,0,

%T -25,6,-1,0,-5,-30,1,0,3,14,-3,0,3,6,-1,0,-3,2,7,0,-5,14,-31,0,1,6,-5,

%U 0,1,18,3,0,-1,-2,-5,0,21,-62,3,0,-3,2,5,0,-1,42,-5,0,11,6,3,0,-3,14,-79,0,-5,-6,1,0,1,6,-7,0,9,10

%N Dirichlet convolution of sigma and the Dirichlet inverse of A003961 (A346234).

%H Antti Karttunen, <a href="/A378607/b378607.txt">Table of n, a(n) for n = 1..20000</a>

%H <a href="/index/Pri#prime_indices">Index entries for sequences related to prime indices in the factorization of n</a>.

%H <a href="/index/Si#SIGMAN">Index entries for sequences related to sigma(n)</a>.

%F a(n) = Sum_{d|n} A000203(d)*A346234(n/d).

%F a(n) = Sum_{d|n} A349388(d).

%o (PARI)

%o A003961(n) = { my(f=factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };

%o A346234(n) = (moebius(n)*A003961(n));

%o A378607(n) = sumdiv(n,d,sigma(d)*A346234(n/d));

%Y Cf. A000203, A003961, A016825, A346234, A378606 (Dirichlet inverse).

%Y Inverse Möbius transform of A349388.

%K sign,mult,new

%O 1,4

%A _Antti Karttunen_, Dec 11 2024