OFFSET
0,1
COMMENTS
This is the other half for A274663.
a(n) is x1^n + x2^n + x3^n, where x1, x2, x3 are the roots of the polynomial x^3 + 11*x^2 - 3*x - 1.
x1 = (cos(2*Pi/7)*cos(4*Pi/7))/(cos(Pi/7))^2,
x2 = -(cos(4*Pi/7)*cos(Pi/7))/(cos(2*Pi/7))^2,
x3 = -(cos(Pi/7) *cos(2*Pi/7))(cos(4*Pi/7))^2.
LINKS
Colin Barker, Table of n, a(n) for n = 0..900
Index entries for linear recurrences with constant coefficients, signature (-11,4,1).
FORMULA
a(0) = 3, a(1) = -11, a(2) = 129; thereafter a(n) = -11*a(n-1) + 4*a(n-2) + a(n-3).
a(n) = ((cos(2*Pi/7)*cos(4*Pi/7))/(cos(Pi/7))^2)^n +(-(cos(4*Pi/7)*cos(Pi/7))/(cos(2*Pi/7))^2)^n +(-(cos(Pi/7)*cos(2*Pi/7))/(cos(4*Pi/7))^2)^n.
G.f.: (3+22*x-4*x^2+149090*x^4+1639990*x^5-596360*x^6-149090*x^7) / (1+11*x-4*x^2-x^3). - Colin Barker, Jul 03 2016
PROG
(PARI) Vec((3+22*x-4*x^2+149090*x^4+1639990*x^5-596360*x^6-149090*x^7) / (1+11*x-4*x^2-x^3) + O(x^20)) \\ Colin Barker, Jul 03 2016
(PARI) first(n)=my(x='x); polsym(x^3+11*x^2-4*x-1, n) \\ Charles R Greathouse IV, Jul 10 2016
CROSSREFS
KEYWORD
sign,easy
AUTHOR
Kai Wang, Jul 01 2016
STATUS
approved