Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #15 Oct 08 2016 06:11:24
%S 1,3,31,339,4131,53013,705139,9618003,133672387,1884947073,
%T 26889061761,387207732453,5619687743151,82101265925409,
%U 1206262382507451,17809706204128659,264074421220475427,3930338612143125849,58692717332813782501,879093138034007102289,13202346737893575996541
%N Diagonal of the rational function 1/(1 - x - y - x y - x z - y z + x y z).
%C Annihilating differential operator: x*(2*x+1)*(6*x^2+x-8)*(x^3-41*x^2-29*x+2)*Dx^2 + (36*x^6-964*x^5-917*x^4+2394*x^3+2339*x^2+400*x-16)*Dx + 12*x^5-104*x^4+57*x^3+1067*x^2+640*x+48.
%H Gheorghe Coserea, <a href="/A274667/b274667.txt">Table of n, a(n) for n = 0..310</a>
%H A. Bostan, S. Boukraa, J.-M. Maillard, J.-A. Weil, <a href="http://arxiv.org/abs/1507.03227">Diagonals of rational functions and selected differential Galois groups</a>, arXiv preprint arXiv:1507.03227 [math-ph], 2015.
%H Jacques-Arthur Weil, <a href="http://www.unilim.fr/pages_perso/jacques-arthur.weil/diagonals/">Supplementary Material for the Paper "Diagonals of rational functions and selected differential Galois groups"</a>
%F G.f.: hypergeom([1/12, 5/12],[1],1728*x^4*(x^3-41*x^2-29*x+2)*(1+2*x)^2/(1-12*x-34*x^2-36*x^3+x^4)^3)/(1-12*x-34*x^2-36*x^3+x^4)^(1/4).
%F 0 = x*(2*x+1)*(6*x^2+x-8)*(x^3-41*x^2-29*x+2)*y'' + (36*x^6-964*x^5-917*x^4+2394*x^3+2339*x^2+400*x-16)*y' + (12*x^5-104*x^4+57*x^3+1067*x^2+640*x+48)*y, where y(x) is the g.f.
%F Recurrence: 2*n^2*(469*n^2 - 2106*n + 2229)*a(n) = (11725*n^4 - 64375*n^3 + 111011*n^2 - 68153*n + 13344)*a(n-1) + (46431*n^4 - 301356*n^3 + 678782*n^2 - 620403*n + 186048)*a(n-2) + (37989*n^4 - 284553*n^3 + 757682*n^2 - 829732*n + 299712)*a(n-3) - 2*(n-3)^2*(469*n^2 - 1168*n + 592)*a(n-4). - _Vaclav Kotesovec_, Jul 05 2016
%t CoefficientList[Series[HypergeometricPFQ[{1/12, 5/12},{1},1728*x^4*(x^3-41*x^2-29*x+2)*(1+2*x)^2/(1-12*x-34*x^2-36*x^3+x^4)^3]/(1-12*x-34*x^2-36*x^3+x^4)^(1/4), {x, 0, 20}], x] (* _Vaclav Kotesovec_, Jul 05 2016 *)
%o (PARI)
%o my(x='x, y='y, z='z);
%o R = 1/(1 - x - y - x*y - x*z - y*z + x*y*z);
%o diag(n, expr, var) = {
%o my(a = vector(n));
%o for (i = 1, #var, expr = taylor(expr, var[#var - i + 1], n));
%o for (k = 1, n, a[k] = expr;
%o for (i = 1, #var, a[k] = polcoeff(a[k], k-1)));
%o return(a);
%o };
%o diag(10, R, [x, y, z])
%o (PARI) \\ system("wget http://www.jjj.de/pari/hypergeom.gpi");
%o read("hypergeom.gpi");
%o N = 22; x = 'x + O('x^N);
%o Vec(hypergeom([1/12, 5/12],[1],1728*x^4*(x^3-41*x^2-29*x+2)*(1+2*x)^2/(1-12*x-34*x^2-36*x^3+x^4)^3, N)/(1-12*x-34*x^2-36*x^3+x^4)^(1/4))
%Y Cf. A268545-A268555.
%K nonn
%O 0,2
%A _Gheorghe Coserea_, Jul 02 2016