login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Matrix inverse of triangle A136590.
6

%I #19 Mar 23 2020 17:29:58

%S 1,0,1,0,-1,1,0,7,-3,1,0,-61,31,-6,1,0,751,-375,85,-10,1,0,-11821,

%T 5911,-1350,185,-15,1,0,226927,-113463,26341,-3710,350,-21,1,0,

%U -5142061,2571031,-603246,87381,-8610,602,-28,1,0,134341711,-67170855,15887845,-2346330,240051,-17766

%N Matrix inverse of triangle A136590.

%C A136590 is the triangle of trinomial logarithmic coefficients.

%C Column 1 is signed A048287, which is the number of semiorders on n labeled nodes whose incomparability graph is connected.

%C The Bell transform of (-1)^n*A048287(n+1). For the definition of the Bell transform see A264428. - _Peter Luschny_, Jan 18 2016

%F T(n,k) = Sum_{i=0..n-1} (-1)^i * (k+i)! * Stirling2(n,k+i) * Catalan(k,i)/k!, where Stirling2(n,k) = A008277(n,k); Catalan(k,i) = C(2i+k,i)*k/(2i+k) = coefficient of x^i in C(x)^k with C(x) = (1-sqrt(1-4x))/(2x).

%e Triangle begins:

%e 1;

%e 0, 1;

%e 0, -1, 1;

%e 0, 7, -3, 1;

%e 0, -61, 31, -6, 1;

%e 0, 751, -375, 85, -10, 1;

%e 0, -11821, 5911, -1350, 185, -15, 1;

%e 0, 226927, -113463, 26341, -3710, 350, -21, 1;

%e 0, -5142061, 2571031, -603246, 87381, -8610, 602, -28, 1;

%e 0, 134341711, -67170855, 15887845, -2346330, 240051, -17766, 966, -36, 1; ...

%p # The function BellMatrix is defined in A264428.

%p BellMatrix(n -> (-1)^n*A048287(n+1), 9); # _Peter Luschny_, Jan 27 2016

%t BellMatrix[f_Function, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]];

%t rows = 11;

%t M = BellMatrix[Sum[(-1)^(k+1) k! StirlingS2[#+1, k] CatalanNumber[k-1], {k, 1, #+1}]&, rows];

%t Table[M[[n, k]], {n, 1, rows}, {k, 1, n}] // Flatten (* _Jean-François Alcover_, Jun 24 2018, after _Peter Luschny_ *)

%o (PARI) {T(n,k) = if(n<k||k<0,0,if(n==k,1,if(k==0,0,n!/(k-1)!* sum(i=0,n-1,(-1)^i * polcoeff(((exp(x + x*O(x^n)) - 1)^(k+i)),n) * binomial(2*i+k,i)/(2*i+k)))))}

%o for(n=0,10,for(k=0,n,print1(T(n,k),", "));print(""))

%o (PARI) /* Define Stirling2: */

%o {Stirling2(n,k) = n!*polcoeff(((exp(x+x*O(x^n))-1)^k)/k!,n)}

%o /* Define Catalan(m,n) = [x^n] C(x)^m: */

%o {CATALAN(m,n) = binomial(2*n+m,n) * m/(2*n+m)}

%o /* Define this triangle: */

%o {T(n,k) = if(n<k||k<0,0,if(n==k,1,if(k==0,0, sum(i=0,n-1,(-1)^i*(k+i)!*Stirling2(n,k+i) * CATALAN(k,i)/k!))))}

%o for(n=0,10,for(k=0,n,print1(T(n,k),", "));print(""))

%o (Sage) # uses[bell_matrix from A264428]

%o bell_matrix(lambda n: (-1)^n*A048287(n+1), 10) # _Peter Luschny_, Jan 18 2016

%Y Cf. columns: A048287, A136596, A136597; A136590 (matrix inverse); A136588, A136589.

%K sign,tabl

%O 0,8

%A _Paul D. Hanna_, Jan 10 2008