OFFSET
0,5
FORMULA
a(3*n) = 10^(n-1) for n > 0.
a(n) = Sum_{k=0..floor(n/3)} 9^k * binomial(n/3-1,k).
D-finite with recurrence (n-1)*(n-2)*a(n) +4*(-7*n^2+48*n-86)*a(n-3) +9*(29*n-141)*(n-6)*a(n-6) -810*(n-6)*(n-9)*a(n-9)=0. - R. J. Mathar, Jun 07 2024
a(n) == 1 (mod 3). - Seiichi Manyama, Jun 11 2024
MAPLE
A371458 := proc(n)
add(9^k*binomial(n/3-1, k), k=0..floor(n/3)) ;
end proc:
seq(A371458(n), n=0..70) ; # R. J. Mathar, Jun 07 2024
PROG
(PARI) a(n) = sum(k=0, n\3, 9^k*binomial(n/3-1, k));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jun 07 2024
STATUS
approved