|
|
A372795
|
|
E.g.f. A(x) satisfies A(A(A(A(x)))) = (exp(8*x) - 1)/8.
|
|
1
|
|
|
0, 1, 2, -2, 8, 24, -2240, 59600, -640000, -35477120, 2287843200, -337824000, -8328489693696, 320219485774848, 53149588906171392, -5832590252624818176, -534898113615540043776, 142559169839206640025600, 6582786304965587026329600
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
LINKS
|
|
|
FORMULA
|
Define the sequence b(n,m) as follows. If n<m, b(n,m) = 0, else if n=m, b(n,m) = 1, otherwise b(n,m) = 1/4 * ( 8^(n-m) * Stirling2(n,m) - Sum_{l=m+1..n-1} (b(n,l) + Sum_{k=l..n} (b(n,k) + Sum_{j=k..n} b(n,j) * b(j,k)) * b(k,l)) * b(l,m) ). a(n) = b(n,1).
|
|
CROSSREFS
|
|
|
KEYWORD
|
sign
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|