login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A209519
Expansion A(x) = Sum_{n>0} a(n)*x^n/(3^(n-1)*n!), A(x) satisfies A(A(A(x)))=e^x-1.
4
1, 1, 0, 0, 2, -21, 138, 150, -22833, 303975, 3451320, -214016553, 666006714, 228865308144, -4943013567642, -396567325158381, 21423378444873687, 1022158819761317838, -121532275123709160942
OFFSET
1,5
LINKS
FORMULA
a(n)=3^(n-1)*n!*T(n,1), T(n,m)=1/3*(stirling2(n,m)*m!/n!-sum(k=m+1..n-1, T(k,m)*sum(i=k..n, T(n,i)*T(i,k)))-T(m,m)*sum(i=m+1..n-1, T(n,i)*T(i,m))), n>m, T(n,n)=1.
PROG
(Maxima)
T(n, m):=if n=m then 1 else 1/3*(stirling2(n, m)*m!/n!-sum(T(k, m)*sum(T(n, i)*T(i, k), i, k, n), k, m+1, n-1)-T(m, m)*sum(T(n, i)*T(i, m), i, m+1, n-1));
makelist(n!*3^(n-1)*(T(n, 1)), n, 1, 7);
CROSSREFS
Cf. A184011.
Sequence in context: A171009 A098661 A095262 * A377859 A215710 A112673
KEYWORD
sign
AUTHOR
Vladimir Kruchinin, Mar 10 2012
STATUS
approved