OFFSET
0,3
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..450
FORMULA
a(n+1) = n! + (n-1)! * (1-(-1)^n)/2.
a(n+2) = 2*A052558(n).
conjecture: -a(n) +a(n-1) +(n-1)*(n-3)*a(n-2)=0. - R. J. Mathar, Nov 14 2011
G.f.: 1-G(0), where G(k)= 1 + x*(2*k-1)/(1 - x*(2*k+2)/(x*(2*k+2) + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 11 2013
Sum_{n>=1} 1/a(n) = sinh(1) + 1 = A073742 + 1. - Amiram Eldar, Jan 22 2023
MATHEMATICA
Join[{0, 1}, Table[(n-1)! + (n-2)!*(1+(-1)^n)/2, {n, 2, 30}]] (* or *) With[{nmax = 50}, CoefficientList[Series[(1/2)*(1 + x)*Log[(1 + x)/(1 - x)], {x, 0, nmax}], x]*Range[0, nmax]!] (* G. C. Greubel, Jan 17 2018 *)
PROG
(PARI) for(n=0, 30, print1(if(n==0, 0, if(n==1, 1, (n-1)! + (n-2)!*(1 + (-1)^n)/2)), ", ")) \\ G. C. Greubel, Jan 17 2018
(Magma) [0, 1] cat [Factorial(n-1) + Factorial(n-2)*(1+(-1)^n)/2: n in [2..30]]; // G. C. Greubel, Jan 17 2018
CROSSREFS
From Johannes W. Meijer, Nov 12 2009: (Start)
Cf. A109613 (odd numbers repeated).
Equals the first left hand column of A167552.
Equals the first right hand column of A167556.
(End)
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Sep 14 2004
STATUS
approved