login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A098557
Expansion of e.g.f. (1/2)*(1+x)*log((1+x)/(1-x)).
6
0, 1, 2, 2, 8, 24, 144, 720, 5760, 40320, 403200, 3628800, 43545600, 479001600, 6706022400, 87178291200, 1394852659200, 20922789888000, 376610217984000, 6402373705728000, 128047474114560000, 2432902008176640000, 53523844179886080000, 1124000727777607680000
OFFSET
0,3
LINKS
FORMULA
a(n+1) = n! + (n-1)! * (1-(-1)^n)/2.
a(n+2) = 2*A052558(n).
conjecture: -a(n) +a(n-1) +(n-1)*(n-3)*a(n-2)=0. - R. J. Mathar, Nov 14 2011
G.f.: 1-G(0), where G(k)= 1 + x*(2*k-1)/(1 - x*(2*k+2)/(x*(2*k+2) + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 11 2013
Sum_{n>=1} 1/a(n) = sinh(1) + 1 = A073742 + 1. - Amiram Eldar, Jan 22 2023
MATHEMATICA
Join[{0, 1}, Table[(n-1)! + (n-2)!*(1+(-1)^n)/2, {n, 2, 30}]] (* or *) With[{nmax = 50}, CoefficientList[Series[(1/2)*(1 + x)*Log[(1 + x)/(1 - x)], {x, 0, nmax}], x]*Range[0, nmax]!] (* G. C. Greubel, Jan 17 2018 *)
PROG
(PARI) for(n=0, 30, print1(if(n==0, 0, if(n==1, 1, (n-1)! + (n-2)!*(1 + (-1)^n)/2)), ", ")) \\ G. C. Greubel, Jan 17 2018
(Magma) [0, 1] cat [Factorial(n-1) + Factorial(n-2)*(1+(-1)^n)/2: n in [2..30]]; // G. C. Greubel, Jan 17 2018
CROSSREFS
From Johannes W. Meijer, Nov 12 2009: (Start)
Cf. A109613 (odd numbers repeated).
Equals the first left hand column of A167552.
Equals the first right hand column of A167556.
A098557(n)*A064455(n) equals the second right hand column of A167556(n).
(End)
Sequence in context: A113464 A353252 A054093 * A354066 A372795 A287756
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Sep 14 2004
STATUS
approved