login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of e.g.f. exp(-2*x/(1 - x))/(1 - x).
7

%I #16 Sep 08 2022 08:46:20

%S 1,-1,-2,-2,8,88,592,3344,14464,2944,-1121536,-21603584,-317969408,

%T -4202380288,-51322677248,-562045749248,-4751724347392,-3419742961664,

%U 1260396818661376,45221885372727296,1218206507254153216,29421299633821057024,669044215287581769728,14528992234596624498688

%N Expansion of e.g.f. exp(-2*x/(1 - x))/(1 - x).

%H G. C. Greubel, <a href="/A295382/b295382.txt">Table of n, a(n) for n = 0..449</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/LaguerrePolynomial.html">Laguerre Polynomial</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Laguerre_polynomials">Laguerre polynomials</a>

%H <a href="/index/La#Laguerre">Index entries for sequences related to Laguerre polynomials</a>

%F E.g.f.: exp(-2*x/(1 - x))/(1 - x).

%F a(n) = n!*Laguerre(n,2).

%F a(n) = n!*Sum_{k=0..n} (-1)^k*binomial(n,k)*2^k/k!.

%F a(n) = n!*A160623(n)/A160624(n).

%p a:=series(exp(-2*x/(1-x))/(1-x),x=0,24): seq(n!*coeff(a,x,n),n=0..23); # _Paolo P. Lava_, Mar 27 2019

%t nmax = 23; CoefficientList[Series[Exp[-2 x/(1 - x)]/(1 - x), {x, 0, nmax}], x] Range[0, nmax]!

%t Table[n! LaguerreL[n, 2], {n, 0, 23}]

%t Table[n! Hypergeometric1F1[-n, 1, 2], {n, 0, 23}]

%t Table[n! Sum[(-1)^k Binomial[n, k] 2^k/k!, {k, 0, n}], {n, 0, 23}]

%o (PARI) x='x+O('x^30); Vec(serlaplace(exp(-2*x/(1-x))/(1-x))) \\ _G. C. Greubel_, Feb 06 2018

%o (Magma) [Factorial(n)*(&+[(-1)^k*Binomial(n,k)*2^k/Factorial(k): k in [0..n]]): n in [0..30]]; // _G. C. Greubel_, Feb 06 2018

%Y Column k=2 of A295381.

%Y Cf. A009940, A087912, A160623, A160624, A277423.

%K sign

%O 0,3

%A _Ilya Gutkovskiy_, Nov 21 2017