login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A105036
a(n) = 26*a(n-2) - a(n-4) + 12, with a(0) = 0, a(1) = 4, a(2) = 8, a(3) = 116.
3
0, 4, 8, 116, 220, 3024, 5724, 78520, 148616, 2038508, 3858304, 52922700, 100167300, 1373951704, 2600491508, 35669821616, 67512611920, 926041410324, 1752727418424, 24041406846820, 45503400267116, 624150536607008
OFFSET
0,2
COMMENTS
It appears this sequence gives all the nonnegative m such that 42*m^2 + 42*m + 1 is a square.
FORMULA
a(n) = 26*a(n-2) - a(n-4) + 12, for n > 3.
From R. J. Mathar, Sep 13 2009: (Start)
G.f.: 4*x*(1+x+x^2)/((1-x)*(1-26*x^2+x^4)).
a(n) = a(n-1) +26*a(n-2) -26*a(n-3) -a(n-4) +a(n-5). (End)
From Ralf Stephan, Nov 15 2010: (Start)
a(2n) = (1/2)*(A097309(n+2) - 9*A097309(n+1) - 1).
a(2n+1) = (1/2)*(9*A097309(n+2) - A097309(n+1) - 1). (End)
MATHEMATICA
LinearRecurrence[{1, 26, -26, -1, 1}, {0, 4, 8, 116, 220}, 30] (* Harvey P. Dale, Mar 25 2013 *)
PROG
(Magma) R<x>:=PowerSeriesRing(Integers(), 40); [0] cat Coefficients(R!( 4*x*(1+x+x^2)/((1-x)*(1-26*x^2+x^4)) )); // G. C. Greubel, Mar 15 2023
(SageMath)
@CachedFunction
def a(n): # a = A105036
if (n<5): return (0, 4, 8, 116, 220)[n]
else: return a(n-1) +26*a(n-2) -26*a(n-3) -a(n-4) +a(n-5)
[a(n) for n in range(41)] # G. C. Greubel, Mar 15 2023
CROSSREFS
Sequence in context: A273060 A215844 A111100 * A012940 A182967 A013049
KEYWORD
nonn
AUTHOR
Gerald McGarvey, Apr 03 2005
STATUS
approved