OFFSET
0,3
FORMULA
G.f. satisfies: A(x) = 1 + A(x)^3*Series_Reversion(x*A(x)).
G.f. satisfies: A( x*(1-x)^2*A(x*(1-x)^2) ) = 1/(1-x).
G.f. satisfies: A( (x/(1+x)^3)*A(x/(1+x)^3) ) = 1 + x.
EXAMPLE
G.f.: A(x) = 1 + x + 2*x^2 + 6*x^3 + 21*x^4 + 82*x^5 + 340*x^6 +...
A(x*A(x)) = 1 + x + 3*x^2 + 12*x^3 + 55*x^4 + 273*x^5 + 1428*x^6 +...
PROG
(PARI) {a(n)=local(A=1+x, F=sum(k=0, n, binomial(3*k+1, k)/(3*k+1)*x^k)+x*O(x^n)); for(i=0, n, A=subst(F, x, serreverse(x*(A+x*O(x^n))^1))); polcoeff(A, n)}
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=1+A^3*serreverse(x*(A+x*O(x^n)))); polcoeff(A, n)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 06 2009
STATUS
approved