login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of partitions of n such that the smallest part is divisible by the number of parts.
10

%I #23 Dec 22 2024 10:59:19

%S 1,1,1,2,2,2,2,3,4,4,5,6,7,7,8,10,11,13,15,18,20,23,25,29,33,36,41,47,

%T 53,58,66,74,83,92,103,116,130,144,160,179,199,219,243,269,298,328,

%U 362,399,441,484,533,586,645,708,778,854,937,1026,1124,1230,1347,1470,1607,1756,1917,2089

%N Number of partitions of n such that the smallest part is divisible by the number of parts.

%H Seiichi Manyama, <a href="/A168656/b168656.txt">Table of n, a(n) for n = 1..10000</a>

%F G.f.: Sum_{k>=1} x^(k^2)/((1-x^(k^2)) * Product_{i=1..k-1} (1-x^i)).

%F a(n) ~ c * exp(2*Pi*sqrt(n/15)) / n^(3/4), where c = 1 / (2 * 3^(1/4) * sqrt(5) * phi^(3/2)) = 0.08255116908... and phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - _Vaclav Kotesovec_, Oct 17 2024

%t nmax = 100; Rest[CoefficientList[Series[Sum[x^(k^2)/((1 - x^(k^2))*Product[1 - x^j, {j, 1, k-1}]), {k, 1, Sqrt[nmax]}], {x, 0, nmax}], x]] (* _Vaclav Kotesovec_, Oct 16 2024 *)

%t Table[Count[IntegerPartitions[n],_?(Mod[#[[-1]],Length[#]]==0&)],{n,70}] (* _Harvey P. Dale_, Dec 22 2024 *)

%o (PARI)

%o N=100; x='x+O('x^N);

%o Vec( sum(k=1,sqrtint(N), x^(k^2)/(1-x^(k^2)) / prod(i=1,k-1, 1-x^i) ) )

%Y Cf. A000041, A006141, A073336, A079501, A168655, A168657, A168659.

%K easy,nonn,changed

%O 1,4

%A _Vladeta Jovovic_, Dec 01 2009, Dec 04 2009