The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A248182 Least k such that r - sum{1/C(h,[h/2]}, h = 0..k} < 1/2^n, where r = sum{1/C(h,[h/2]}, h = 0..infinity}. 2
 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS This sequence gives a measure of the convergence rate of sum{1/C(h,[h/2]), h = 0..k}.  It appears that a(n+1) - a(n) is in {2,3} for n >= 0. LINKS Clark Kimberling, Table of n, a(n) for n = 0..1000 EXAMPLE Let s(n) = sum{1/C(2h+1,h), h = 0..n}.  Approximations are shown here: n ... r - s(n) ... 1/2^n 0 ... 2.2092 ..... 1 1 ... 1.2092 ..... 0.5 2 ... 0.7092 ..... 0.25 3 ... 0.375866 ... 0.125 4 ... 0.2092 ..... 0.0625 5 ... 0.1092 ..... 0.0635 6 ... 0.05919 .... 0.0156 7 ... 0.03063 .... 0.007812 8 ... 0.01634 .... 0.003906 9 ... 0.00840 .... 0.001953 a(6) = 9 because r - s(9) < 1/64 < r - s(8). MATHEMATICA z = 300; p[k_] := p[k] = Sum[1/Binomial[h, Floor[h/2]], {h, 0, k}]; r = N[Sum[1/Binomial[h, Floor[h/2]], {h, 0, 1000}], 20]  (* A248181 *) N[Table[r - p[n], {n, 0, z/10}]] f[n_] := f[n] = Select[Range[z], r - p[#] < 1/2^n &, 1] Flatten[Table[f[n], {n, 0, z}]]  (* A248182 *) CROSSREFS Cf. A248181, A248148. Sequence in context: A224247 A004727 A102352 * A219227 A007412 A270420 Adjacent sequences:  A248179 A248180 A248181 * A248183 A248184 A248185 KEYWORD nonn,easy AUTHOR Clark Kimberling, Oct 04 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 31 10:42 EDT 2020. Contains 334748 sequences. (Running on oeis4.)