login
A329090
Decimal expansion of Sum_{k>=1} 1/(k^2+2).
13
8, 6, 1, 0, 2, 8, 1, 0, 0, 5, 7, 3, 7, 2, 7, 9, 2, 2, 8, 2, 1, 3, 3, 2, 1, 5, 8, 5, 1, 8, 2, 3, 4, 6, 3, 6, 8, 7, 2, 8, 5, 3, 5, 6, 0, 7, 0, 6, 9, 3, 0, 7, 2, 3, 3, 4, 9, 4, 7, 8, 9, 0, 0, 1, 6, 0, 7, 8, 2, 1, 1, 4, 6, 3, 6, 5, 5, 4, 4, 4, 5, 7, 3, 7, 6, 1, 5, 1, 4, 7, 1
OFFSET
0,1
COMMENTS
In general, for complex numbers z, if we define F(z) = Sum_{k>=0} 1/(k^2+z), f(z) = Sum_{k>=1} 1/(k^2+z), then we have:
F(z) = (1 + sqrt(z)*Pi*coth(sqrt(z)*Pi))/(2z), z != 0, -1, -4, -9, -16, ...;
f(z) = (-1 + sqrt(z)*Pi*coth(sqrt(z)*Pi))/(2z), z != 0, -1, -4, -9, -16, ...; Pi^2/6, z = 0. Note that f(z) is continuous at z = 0.
This sequence gives f(2).
This and A329083 are essentially the same, but both sequences are added because some people may search for this, and some people may search for A329083.
FORMULA
Equals (-1 + (sqrt(2)*Pi)*coth(sqrt(2)*Pi))/4.
Equals (-1 + (sqrt(-2)*Pi)*cot(sqrt(-2)*Pi))/4.
EXAMPLE
Sum_{k>=1} 1/(k^2+2) = 0.86102810057372792282...
MATHEMATICA
RealDigits[(-1 + Sqrt[2]*Pi*Coth[Sqrt[2]*Pi])/4, 10, 120][[1]] (* Amiram Eldar, Jun 18 2023 *)
PROG
(PARI) default(realprecision, 100); my(f(x) = (-1 + (sqrt(x)*Pi)/tanh(sqrt(x)*Pi))/(2*x)); f(2)
(PARI) sumnumrat(1/(x^2+2), 1) \\ Charles R Greathouse IV, Jan 20 2022
CROSSREFS
Cf. A329080 (F(-5)), A329081 (F(-3)), A329082 (F(-2)), A113319 (F(1)), A329083 (F(2)), A329084 (F(3)), A329085 (F(4)), A329086 (F(5)).
Cf. A329087 (f(-5)), A329088 (f(-3)), A329089 (f(-2)), A013661 (f(0)), A259171 (f(1)), this sequence (f(2)), A329091 (f(3)), A329092 (f(4)), A329093 (f(5)).
Sequence in context: A240805 A010115 A268438 * A197759 A199070 A372268
KEYWORD
nonn,cons
AUTHOR
Jianing Song, Nov 04 2019
STATUS
approved