login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A240805
Coefficients in expansion of graph zeta function for complete graph K_4.
2
1, 0, 0, 8, 6, 0, 48, 72, 39, 272, 600, 624, 1772, 4416, 6528, 13488, 32157, 57504, 110064, 241848, 471618, 905280, 1880112, 3773112, 7371427, 14901552, 30032904, 59457632, 119043912, 239326080, 477043584, 953016288, 1910769273, 3818911040, 7630062048, 15274147560, 30550681406, 61067895168, 122165728944, 244373547432
OFFSET
0,4
REFERENCES
Audrey Terras, Zeta functions of graphs. A stroll through the garden. Cambridge Studies in Advanced Mathematics, 128. Cambridge University Press, Cambridge, 2011. xii+239 pp. ISBN: 978-0-521-11367-0; MR2768284 (2012d:05016).
LINKS
L. Bartholdi, Review of Terras (2011), Bull. Amer. Math. Soc., 51 (2014), 177-185.
Index entries for linear recurrences with constant coefficients, signature (0,0,8,6,0,-16,-24,3,16,24,0,-16).
FORMULA
From Chai Wah Wu, Jan 19 2020: (Start)
a(n) = 8*a(n-3) + 6*a(n-4) - 16*a(n-6) - 24*a(n-7) + 3*a(n-8) + 16*a(n-9) + 24*a(n-10) - 16*a(n-12) for n > 11.
G.f.: 1/((x - 1)^3*(x + 1)^2*(2*x - 1)*(2*x^2 + x + 1)^3). (End)
EXAMPLE
Zeta function is 1/((1-x^2)^2*(1-x)*(1-2*x)*(1+x+2*x^2)^3).
MATHEMATICA
CoefficientList[Series[1/((1 - x^2)^2 (1 - x) (1 - 2 x) (1 + x + 2 x^2)^3), {x, 0, 40}], x] (* Vincenzo Librandi, Apr 16 2014 *)
LinearRecurrence[{0, 0, 8, 6, 0, -16, -24, 3, 16, 24, 0, -16}, {1, 0, 0, 8, 6, 0, 48, 72, 39, 272, 600, 624}, 40] (* Harvey P. Dale, Oct 19 2024 *)
CROSSREFS
Cf. A240806.
Sequence in context: A156551 A074738 A344041 * A010115 A268438 A329090
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Apr 15 2014
STATUS
approved