login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A240805 Coefficients in expansion of graph zeta function for complete graph K_4. 2
1, 0, 0, 8, 6, 0, 48, 72, 39, 272, 600, 624, 1772, 4416, 6528, 13488, 32157, 57504, 110064, 241848, 471618, 905280, 1880112, 3773112, 7371427, 14901552, 30032904, 59457632, 119043912, 239326080, 477043584, 953016288, 1910769273, 3818911040, 7630062048, 15274147560, 30550681406, 61067895168, 122165728944, 244373547432 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

REFERENCES

Audrey Terras, Zeta functions of graphs. A stroll through the garden. Cambridge Studies in Advanced Mathematics, 128. Cambridge University Press, Cambridge, 2011. xii+239 pp. ISBN: 978-0-521-11367-0; MR2768284 (2012d:05016).

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

L. Bartholdi, Review of Terras (2011), Bull. Amer. Math. Soc., 51 (2014), 177-185.

FORMULA

From Chai Wah Wu, Jan 19 2020: (Start)

a(n) = 8*a(n-3) + 6*a(n-4) - 16*a(n-6) - 24*a(n-7) + 3*a(n-8) + 16*a(n-9) + 24*a(n-10) - 16*a(n-12) for n > 11.

G.f.: 1/((x - 1)^3*(x + 1)^2*(2*x - 1)*(2*x^2 + x + 1)^3). (End)

EXAMPLE

Zeta function is 1/((1-x^2)^2*(1-x)*(1-2*x)*(1+x+2*x^2)^3).

MATHEMATICA

CoefficientList[Series[1/((1 - x^2)^2 (1 - x) (1 - 2 x) (1 + x + 2 x^2)^3), {x, 0, 40}], x] (* Vincenzo Librandi, Apr 16 2014 *)

CROSSREFS

Cf. A240806.

Sequence in context: A069855 A156551 A074738 * A010115 A268438 A329090

Adjacent sequences:  A240802 A240803 A240804 * A240806 A240807 A240808

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane, Apr 15 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 6 09:45 EDT 2021. Contains 343580 sequences. (Running on oeis4.)