login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A240806
Coefficients in expansion of graph zeta function of graph obtained by adding 4 vertices to each edge of K_5.
2
1, 3, 12, 39, 126, 381, 1169, 3528, 10611, 31869, 95742, 287235, 861753, 2585646, 7757199, 23270967, 69814035, 209444148, 628329001, 1884986319, 5654972973, 16964909958, 50894701155, 152684163435, 458052522680, 1374157361943, 4122472203369, 12367417119426, 37102250507967, 111306750857883, 333920255806104, 1001760766199415, 3005282290140126
OFFSET
0,2
LINKS
Horton, Matthew D., H. M. Stark, and Audrey A. Terras. What are zeta functions of graphs and what are they good for? Contemporary Mathematics 415 (2006): 173-190. The graph is shown on the left in Fig. 1.
Index entries for linear recurrences with constant coefficients, signature (3, 3, -6, -9, -15, 35, 60, -75, -75, 81, 42, -43, -9, 9).
FORMULA
G.f.: 1/(-(1-x)^6*(x+1)^5*(9*x^3+2*x-1)). - Vincenzo Librandi, Apr 16 2014
a(n) = 3*a(n-1) + 3*a(n-2) - 6*a(n-3) - 9*a(n-4) - 15*a(n-5) + 35*a(n-6) + 60*a(n-7) - 75*a(n-8) - 75*a(n-9) + 81*a(n-10) + 42*a(n-11) - 43*a(n-12) - 9*a(n-13) + 9*a(n-14) for n > 13. - Chai Wah Wu, Jan 19 2020
EXAMPLE
The zeta function is 1/((1-x^10)^5*(1-3*x^5)*(1-x^5)*(1+x^5+3*x^10)).
MATHEMATICA
CoefficientList[Series[1/(-(1 - x)^6 (x + 1)^5 (9 x^3 + 2 x - 1)), {x, 0, 50}], x] (* Vincenzo Librandi, Apr 16 2014 *)
CROSSREFS
Cf. A240805.
Sequence in context: A055294 A029858 A123109 * A242587 A330169 A375256
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Apr 15 2014
STATUS
approved