Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #14 Jun 15 2023 02:29:20
%S 8,0,2,4,8,2,5,8,4,8,0,6,7,8,6,8,8,6,8,3,5,8,4,4,9,5,4,4,8,6,5,5,7,7,
%T 0,9,4,0,7,1,6,0,7,2,9,7,9,0,5,7,0,1,3,6,4,1,9,8,5,9,5,9,3,9,6,0,9,4,
%U 0,1,4,9,5,4,0,5,3,4,0,8,0,4,5,5,2,9,1,0,9,3,9
%N Decimal expansion of Sum_{k>=0} 1/(k^2+5).
%C In general, for complex numbers z, if we define F(z) = Sum_{k>=0} 1/(k^2+z), f(z) = Sum_{k>=1} 1/(k^2+z), then we have:
%C F(z) = (1 + sqrt(z)*Pi*coth(sqrt(z)*Pi))/(2z), z != 0, -1, -4, -9, -16, ...;
%C f(z) = (-1 + sqrt(z)*Pi*coth(sqrt(z)*Pi))/(2z), z != 0, -1, -4, -9, -16, ...; Pi^2/6, z = 0. Note that f(z) is continuous at z = 0.
%C This sequence gives F(5).
%C This and A329093 are essentially the same, but both sequences are added because some people may search for this, and some people may search for A329093.
%F Sum_{k>=0} 1/(k^2+5) = (1 + (sqrt(5)*Pi)*coth(sqrt(5)*Pi))/10 = (1 + (sqrt(-5)*Pi)*cot(sqrt(-5)*Pi))/10.
%e Sum_{k>=0} 1/(k^2+5) = 0.80248258480678688683...
%t RealDigits[(1 + Sqrt[5]*Pi*Coth[Sqrt[5]*Pi])/10, 10, 120][[1]] (* _Amiram Eldar_, Jun 15 2023 *)
%o (PARI) default(realprecision, 100); my(F(x) = (1 + (sqrt(x)*Pi)/tanh(sqrt(x)*Pi))/(2*x)); F(5)
%o (PARI) sumnumrat(1/(x^2+5), 0) \\ _Charles R Greathouse IV_, Jan 20 2022
%Y Cf. A329080 (F(-5)), A329081 (F(-3)), A329082 (F(-2)), A113319 (F(1)), A329083 (F(2)), A329084 (F(3)), A329085 (F(4)), this sequence (F(5)).
%Y Cf. A329087 (f(-5)), A329088 (f(-3)), A329089 (f(-2)), A013661 (f(0)), A259171 (f(1)), A329090 (f(2)), A329091 (f(3)), A329092 (f(4)), A329093 (f(5)).
%K nonn,cons
%O 0,1
%A _Jianing Song_, Nov 04 2019