login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of Pi/(3*sqrt(2)).
21

%I #66 Aug 21 2024 17:11:08

%S 7,4,0,4,8,0,4,8,9,6,9,3,0,6,1,0,4,1,1,6,9,3,1,3,4,9,8,3,4,3,4,4,8,9,

%T 4,9,7,6,9,1,0,3,6,1,4,8,9,5,9,4,8,3,7,0,5,1,4,2,3,2,6,0,1,1,5,9,4,0,

%U 5,7,9,8,8,4,9,9,1,2,3,1,8,4,2,9,2,2,1,1,5,5,7,9,4,1,2,7,5,3,9,5,6,0

%N Decimal expansion of Pi/(3*sqrt(2)).

%C Density of densest packing of equal spheres in three dimensions (achieved for example by the fcc lattice).

%C Atomic packing factor (APF) of the face-centered-cubic (fcc) and the hexagonal-close-packed (hcp) crystal lattices filled with spheres of the same diameter. - _Stanislav Sykora_, Sep 29 2014

%D J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer, 3rd. ed., 1998. See p. 15, line n = 3.

%D Clifford A. Pickover, The Math Book: From Pythagoras to the 57th Dimension, 250 Milestones in the History of Mathematics (2009), at p. 126.

%D David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987, p. 29.

%H Harry J. Smith, <a href="/A093825/b093825.txt">Table of n, a(n) for n = 0..20000</a>

%H James Grime and Brady Haran, <a href="https://www.youtube.com/watch?v=CROeIGfr3gs">The Best Way to Pack Spheres</a>, Numberphile video (2018).

%H J. H. Conway and N. J. A. Sloane, <a href="https://doi.org/10.1007/BF02574051">What are all the best sphere packings in low dimensions?</a>, Discr. Comp. Geom., 13 (1995), 383-403.

%H Thomas C. Hales, <a href="https://publicationsthomashales.wordpress.com/books/#post-113">Dense Sphere Packings</a>, Cambridge University Press, 2012.

%H G. Nebe and N. J. A. Sloane, <a href="http://www.math.rwth-aachen.de/~Gabriele.Nebe/LATTICES/D3.html">Home page for fcc lattice</a>.

%H N. J. A. Sloane and Andrey Zabolotskiy, <a href="/A093825/a093825_1.txt">Table of maximal density of a packing of equal spheres in n-dimensional Euclidean space</a> (some values are only conjectural).

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/CubicClosePacking.html">Cubic Close Packing</a>.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/EllipsoidPacking.html">Ellipsoid Packing</a>.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/SpherePacking.html">Sphere Packing</a>.

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Atomic_packing_factor">Atomic packing factor</a>.

%H <a href="/index/Fa#fcc">Index entries for sequences related to f.c.c. lattice</a>.

%H <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>.

%F Equals A019670*A010503. - _R. J. Mathar_, Feb 05 2009

%e 0.74048048969306104116931349834344894976910361489594837...

%t RealDigits[Pi/(3 Sqrt[2]), 10, 120][[1]] (* _Harvey P. Dale_, Feb 03 2012 *)

%o (PARI) default(realprecision, 20080); x=10*Pi*sqrt(2)/6; for (n=0, 20000, d=floor(x); x=(x-d)*10; write("b093825.txt", n, " ", d)); \\ _Harry J. Smith_, Jun 18 2009

%o (PARI) Pi/sqrt(18) \\ _Charles R Greathouse IV_, May 11 2017

%Y Cf. A093824.

%Y Cf. APF's of other crystal lattices: A019673 (simple cubic), A247446 (diamond cubic).

%Y Cf. A161686 (continued fraction).

%Y Related constants: A020769, A020789, A093766, A222066, A222067, A222068, A222069, A222070, A222071, A222072, A260646.

%K nonn,cons,easy

%O 0,1

%A _Eric W. Weisstein_, Apr 16 2004

%E Entry revised by _N. J. A. Sloane_, Feb 10 2013