login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle read by rows: T(n, k), for 1 <= k <= n, where T(n, k) is defined in A192763.
0

%I #15 Oct 07 2017 21:57:34

%S 1,2,-2,1,2,-3,1,-2,1,0,0,2,2,1,-5,1,-2,-3,-2,0,6,0,2,1,1,2,1,-7,0,-2,

%T 2,0,2,-2,0,0,0,2,-3,1,1,-3,2,0,0,1,-2,1,-2,-5,-2,1,-2,0,10,0,2,2,1,0,

%U 0,1,2,2,1,-11,0,-2,-3,0,2,6,2,0,-3,-2,0,0,-1

%N Triangle read by rows: T(n, k), for 1 <= k <= n, where T(n, k) is defined in A192763.

%C The function T(n, k) = T(k, n) is defined for k > n also but only the values for 1 <= k <= n as a triangular array are listed here.

%H M. Granvik, <a href="http://math.stackexchange.com/questions/50719/">Is this a recurrence for the Mertens function plus 2?</a>, Math StackExchange question 50719.

%e Triangle begins:

%e 1;

%e 2, -2;

%e 1, 2, -3;

%e 1, -2, 1, 0;

%e 0, 2, 2, 1, -5;

%e 1, -2, -3, -2, 0, 6;

%e ...

%t T[ n_, k_] := Which[ n < 1 || k < 1, 0, k > n, T[ k, n], k == 1, If[ n < 3, n, (n T[ n - 1, 1] - Sum[ T[ n, i], {i, 2, n - 1}]) / (n + 1)], n > k , T[ k, Mod[ n, k, 1]], True, - Sum[ T[ n, i], {i, n - 1}]];

%o (PARI) {T(n, k) = if( n<1 || k<1, 0, k>n, T(k, n), k==1, if( n<3, n, (n * T(n-1, 1) - sum( i=2, n-1, T(n, i))) / (n+1)), n>k, T(k, (n-1)%k+1), -sum( i=1, n-1, T(n, i)))};

%Y Cf. A192763.

%K sign,tabl

%O 1,2

%A _Michael Somos_, Oct 07 2017