login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A377728
Convolution of Leonardo numbers with Jacobsthal numbers.
1
0, 1, 2, 7, 16, 39, 86, 189, 402, 847, 1760, 3631, 7438, 15165, 30794, 62343, 125904, 253783, 510758, 1026685, 2061730, 4136991, 8295872, 16627167, 33311646, 66716029, 133582106, 267406999, 535206832, 1071049287, 2143127030, 4287918141, 8578528818, 17161414255
OFFSET
0,3
FORMULA
a(n) = Sum_{i=0..n} L(i)*J(n-i) where L = A001595 and J = A001045.
a(n) = (3*J(n+2) - 2*L(n+1) - 1)/2 where L = A001595 and J = A001045.
G.f.: -x*(x^2-x+1)/((x-1)*(2*x-1)*(x+1)*(x^2+x-1)). - Alois P. Heinz, Nov 05 2024
E.g.f.: 2*cosh(2*x) + sinh(x) + 2*sinh(2*x) - 2*exp(x/2)*(5*cosh(sqrt(5)*x/2) + 3*sqrt(5)*sinh(sqrt(5)*x/2))/5. - Stefano Spezia, Nov 06 2024
MATHEMATICA
LinearRecurrence[{3, 0, -5, 1, 2}, {0, 1, 2, 7, 16}, 34] (* Amiram Eldar, Nov 07 2024 *)
PROG
(Python)
from sympy import fibonacci
def A377728(n): return 1-(fibonacci(n+2)<<2)+(m:=(4<<n)+(1 if n&1 else -1))-m%3>>1 # Chai Wah Wu, Nov 09 2024
CROSSREFS
Sequence in context: A260505 A042243 A293378 * A041887 A129441 A093971
KEYWORD
nonn,easy
AUTHOR
STATUS
approved