login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Convolution of Leonardo numbers with Jacobsthal numbers.
1

%I #32 Nov 10 2024 12:59:32

%S 0,1,2,7,16,39,86,189,402,847,1760,3631,7438,15165,30794,62343,125904,

%T 253783,510758,1026685,2061730,4136991,8295872,16627167,33311646,

%U 66716029,133582106,267406999,535206832,1071049287,2143127030,4287918141,8578528818,17161414255

%N Convolution of Leonardo numbers with Jacobsthal numbers.

%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (3,0,-5,1,2).

%F a(n) = Sum_{i=0..n} L(i)*J(n-i) where L = A001595 and J = A001045.

%F a(n) = (3*J(n+2) - 2*L(n+1) - 1)/2 where L = A001595 and J = A001045.

%F G.f.: -x*(x^2-x+1)/((x-1)*(2*x-1)*(x+1)*(x^2+x-1)). - _Alois P. Heinz_, Nov 05 2024

%F E.g.f.: 2*cosh(2*x) + sinh(x) + 2*sinh(2*x) - 2*exp(x/2)*(5*cosh(sqrt(5)*x/2) + 3*sqrt(5)*sinh(sqrt(5)*x/2))/5. - _Stefano Spezia_, Nov 06 2024

%t LinearRecurrence[{3, 0, -5, 1, 2}, {0, 1, 2, 7, 16}, 34] (* _Amiram Eldar_, Nov 07 2024 *)

%o (Python)

%o from sympy import fibonacci

%o def A377728(n): return 1-(fibonacci(n+2)<<2)+(m:=(4<<n)+(1 if n&1 else -1))-m%3>>1 # _Chai Wah Wu_, Nov 09 2024

%Y Cf. A001045, A001595.

%K nonn,easy

%O 0,3

%A _Prabha Sivaramannair_, Nov 05 2024