login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f.: exp( Sum_{n>=1} A052886(n) * x^n/n ).
3

%I #26 Jun 12 2020 11:14:25

%S 1,1,2,8,60,708,11508,238356,5997924,177615460,6050014228,

%T 233010132788,10011985592516,474815000195844,24635182609510260,

%U 1388071373846060244,84406416179170495524,5509502700599270439588,384233531128293605883092,28513258202704586092168820,2243347226931600749380032388,186528883284172684793892938308,16343425532977997699916585695796

%N G.f.: exp( Sum_{n>=1} A052886(n) * x^n/n ).

%C The e.g.f. of A052886 equals Series_Reversion( log(1 + x - x^2) ), which also equals (1 - sqrt(5 - 4*exp(x)) )/2.

%C This sequence is motivated by the following conjectures:

%C (C1) Given integer series G(x) such that G(0) = G'(0) = 1, define L(n) by

%C Sum_{n>=1} L(n) * x^n/n! = Series_Reversion( log(G(x)) )

%C then exp( Sum_{n>=1} L(n) * x^n/n ) is also an integer series;

%C (C2) Given G(x) = 1 + x*G(x)^m, define L(n) by

%C Sum_{n>=1} L(n) * x^n/n! = Series_Reversion( log(G(x)) )

%C then exp( Sum_{n>=1} L(n) * x^n/n ) = (1 + m*x)/(1 + (m-1)*x).

%H Paul D. Hanna, <a href="/A293379/b293379.txt">Table of n, a(n) for n = 0..300</a>

%F a(n) ~ sqrt(5) * n^(n-2) / (2^(3/2) * exp(n) * (log(5/4))^(n-1/2)). - _Vaclav Kotesovec_, Oct 26 2017

%F a(n) = (1/n)*Sum_{m=1..n} m! * C(m-1) * Sum_{s=m..n} Stirling2(s,m) * a(n-s) for n >= 1 with a(0) = 1, where C(n) = A000108(n). - _Petros Hadjicostas_, Jun 12 2020

%e G.f.: A(x) = 1 + x + 2*x^2 + 8*x^3 + 60*x^4 + 708*x^5 + 11508*x^6 + 238356*x^7 + 5997924*x^8 + 177615460*x^9 + 6050014228*x^10 +...

%e such that

%e log(A(x)) = x + 3*x^2/2 + 19*x^3/3 + 207*x^4/4 + 3211*x^5/5 + 64383*x^6/6 + 1581259*x^7/7 + 45948927*x^8/8 + 1541641771*x^9/9 +...+ A052886(n)*x^n/n +...

%e Note that the e.g.f. of A052886 equals Series_Reversion( log(1 + x - x^2) ) = x + 3*x^2/2! + 19*x^3/3! + 207*x^4/4! + 3211*x^5/5! + 64383*x^6/6! + 1581259*x^7/7! + 45948927*x^8/8! +...

%t nmax = 20; A052886 = CoefficientList[Series[(1 - Sqrt[5 - 4*E^x])/2, {x, 0, nmax}], x] * Range[0, nmax]!; Clear[a]; a[n_]:= a[n] = Sum[A052886[[n-k+1]]*a[k], {k, 0, n-1}] / n; a[0] = 1; Table[a[n], {n, 0, nmax}] (* _Vaclav Kotesovec_, Oct 26 2017 *)

%o (PARI) {a(n) = my(A,L); L = x*serlaplace( 1/x*serreverse( log(1+x-x^2 +O(x^(n+2))) ) ); A = exp(L); polcoeff(A,n)}

%o for(n=0,30,print1(a(n),", "))

%o (PARI) c(n) = (1/(n+1))*binomial(2*n,n); /* A000108 */

%o lista(nn)={my(a=vector(nn)); a[1]=1; for(n=2, nn, a[n] = (1/(n-1))*sum(m=1, n-1, m!*c(m-1)*sum(s=m,n-1, stirling(s,m,2)*a[n-s]))); a;} \\ _Petros Hadjicostas_, Jun 12 2020

%Y Cf. A000108, A052886, A294115.

%K nonn

%O 0,3

%A _Paul D. Hanna_, Oct 22 2017